首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genomic organization of glycinin genes in soybean   总被引:9,自引:0,他引:9  
Glycinin is the predominant seed storage protein in most soybean varieties. Previously, five major genes (designated Gy1 to Gy5) encoding glycinin subunits have been described. In this report two new genes are identified and mapped: a glycinin pseudogene, gy6, and a functional gene, Gy7. Messenger RNA for the gy6 pseudogene is not detected in developing seeds. While Gy7 mRNA was present at the midmaturation stage of seed development in the soybean variety Resnik, the steady state amount of this message was at least an order of magnitude less-prevalent than the mRNA encoding each of the other five glycinin subunits. Even though the amino-acid sequence of the glycinin subunit G7 is related to the other five soybean 11S subunits, it does not fit into either the Group-1 (G1, G2, G3) or the Group-2 (G4, G5) glycinin subunit families. The Gy7 gene is tandemly linked 3' to Gy3 on Linkage Group L (chromosome 19) of the public molecular linkage map. By contrast, the gy6 gene occupies a locus downstream from Gy2 on Linkage Group N (chromosome 3) in a region that is related to the position where Gy7 is located on chromosome 19.  相似文献   

2.
Structure and flanking regions of soybean seed protein genes   总被引:32,自引:0,他引:32  
R L Fischer  R B Goldberg 《Cell》1982,29(2):651-660
We have characterized the structure and flanking region of genes representing two, coordinately expressed, soybean seed protein gene families. One family directs the synthesis of the major storage protean glycinin; the other encodes a 15.5 kd polypeptide of unknown function. DNA blot hybridization experiments showed approximately three, nonallelic genes in the glycinin family and two in the 15 kd protein family, and showed that these families are not selectively amplified or rearranged during embryogeny. R-loop and S1 nuclease mapping studies demonstrated no detectable introns in the 15 kd protein genes but at least one and possibly two in the glycinin genes. No interfamily clustering of these genes occurs within a 10-15 kb chromosomal domain. Nor are they contiguous to other genes expressed at moderate levels during embryogenesis. Each of them, however, is contiguous to a gene expressed at another developmental period in the leaf. These leaf genes encode rare class messages which constitute only 1 X 10(-5%) of the leaf mRNA, or about one molecule per cell. R-loop analysis of two leaf genes showed that one contains no detectable introns while the other possesses at least three. DNA gel blot studies showed that only one of the seed protein genomic clones contains an interspersed repetitive DNA element. Pairwise cross-hybridization studies did not detect any flanking sequences shared by the 15 kd protein, glycinin and leaf genes.  相似文献   

3.
Structural characterization of the glycinin precursors   总被引:21,自引:0,他引:21  
Poly(A)-RNAs enriched for glycinin coding sequences were injected into frog oocytes and translated in the presence of either [3H]leucine or [3H]isoleucine. Sodium dodecyl sulfate electrophoresis indicated that radioactive proteins similar in size to the authentic acidic and basic polypeptide components of glycinin were not present among the glycinin-related proteins synthesized. Instead, high molecular weight precursors (Mr = 58,000-67,000) were immunoprecipitated. Unlike disulfide-linked native glycinin complexes which were cleaved by disulfide reduction, products purified from either rabbit reticulocyte lysate or oocyte translation systems were insensitive to reducing agents. The glycinin-related proteins synthesized in the oocyte were 1000 to 2000 daltons smaller than those synthesized in the reticulocyte lysate system. This result, which suggested that the oocyte system had removed NH2-terminal leader sequences of the preglycinin polypeptides, was confirmed by NH2-terminal sequence analysis of proteins synthesized in oocytes. Radioactive label was found exactly at the positions predicted by the NH2-terminal sequences of the acidic polypeptide component of native glycinin. Glycinin precursors, therefore, have an NH2-terminal leader sequence followed by the acidic peptide component and then the basic polypeptide component, joined in peptide linkage.  相似文献   

4.
We investigated the structure, organization, and developmental regulation of soybean Kunitz trypsin inhibitor genes. The Kunitz trypsin inhibitor gene family contains at least 10 members, many of which are closely linked in tandem pairs. Three Kunitz trypsin inhibitor genes, designated as KTi1, KTi2, and KTi3, do not contain intervening sequences, and are expressed during embryogenesis and in the mature plant. The KTi1 and KTi2 genes have nearly identical nucleotide sequences, are expressed at different levels during embryogenesis, are represented in leaf, root, and stem mRNAs, and probably do not encode proteins with trypsin inhibitor activity. By contrast, the KTi3 gene has diverged 20% from the KTi1 and KTi2 genes, and encodes the prominent Kunitz trypsin inhibitor found in soybean seeds. The KTi3 gene has the highest expression level during embryogenesis, and is also represented in leaf mRNA. All three Kunitz trypsin inhibitor genes are regulated correctly in transformed tobacco plants. Our results suggest that Kunitz trypsin inhibitor genes contain different combinations of cis-control elements that program distinct qualitative and quantitative expression patterns during the soybean life cycle.  相似文献   

5.
M. C. Hart  L. Wang    D. E. Coulter 《Genetics》1996,144(1):171-182
The odd-skipped (odd) gene, which was identified on the basis of a pair-rule segmentation phenotype in mutant embryos, is initially expressed in the Drosophila embryo in seven pair-rule stripes, but later exhibits a segment polarity-like pattern for which no phenotypic correlate is apparent. We have molecularly characterized two embryonically expressed odd-cognate genes, sob and bowel (bowl), that encode proteins with highly conserved C(2)H(2) zinc fingers. While the Sob and Bowl proteins each contain five tandem fingers, the Odd protein lacks a fifth (C-terminal) finger and is also less conserved among the four common fingers. Reminiscent of many segmentation gene paralogues, the closely linked odd and sob genes are expressed during embryogenesis in similar striped patterns; in contrast, the less-tightly linked bowl gene is expressed in a distinctly different pattern at the termini of the early embryo. Although our results indicate that odd and sob are more likely than bowl to share overlapping developmental roles, some functional divergence between the Odd and Sob proteins is suggested by the absence of homology outside the zinc fingers, and also by amino acid substitutions in the Odd zinc fingers at positions that appear to be constrained in Sob and Bowl.  相似文献   

6.
7.
We used in situ hybridization to investigate Kunitz trypsin inhibitor gene expression programs at the cell level in soybean embryos and in transformed tobacco seeds. The major Kunitz trypsin inhibitor mRNA, designated as KTi3, is first detectable in a specific globular stage embryo region, and then becomes localized within the axis of heart, cotyledon, and maturation stage embryos. By contrast, a related Kunitz trypsin inhibitor mRNA class, designated as KTi1/2, is not detectable during early embryogenesis. Nor is the KTi1/2 mRNA detectable in the axis at later developmental stages. Outer perimeter cells of each cotyledon accumulate both KTi1/2 and KTi3 mRNAs early in maturation. These mRNAs accumulate progressively from the outside to inside of each cotyledon in a "wave-like" pattern as embryogenesis proceeds. A similar KTi3 mRNA localization pattern is observed in soybean somatic embryos and in transformed tobacco seeds. An unrelated mRNA, encoding [beta]-conglycinin storage protein, also accumulates in a wave-like pattern during soybean embryogenesis. Our results indicate that cell-specific differences in seed protein gene expression programs are established early in development, and that seed protein mRNAs accumulate in a precise cellular pattern during seed maturation. We also show that seed protein gene expression patterns are conserved at the cell level in embryos of distantly related plants, and that these patterns are established in the absence of non-embryonic tissues.  相似文献   

8.
M Kster  T Pieler  A Pting    W Knchel 《The EMBO journal》1988,7(6):1735-1741
We have screened Xenopus laevis cDNA and genomic libraries for finger motif encoding sequences by use of a synthetic oligonucleotide probe coding for a stretch of conserved amino acids, the H/C-link, which joins individual finger loops in several multi-fingered proteins. Our studies reveal that a large number of different cDNA clones encode amino acid sequences predicting multiple units of the metal-coordinating finger structure. Derived proteins are different from each other as well as from the two examples of Xenopus finger proteins reported to date, TFIIIA and X.fin. The 109 finger repeats characterized are derived from 14 different cDNA clones and have been analysed for the presence of conserved and highly variable amino acids, revealing a close structural relatedness among each other as well as with a few selected finger domains from Drosophila and mouse proteins. The results from this comparative sequence analysis are also discussed in terms of the existing models for DNA binding. All sequences are identified in an ovary cDNA library but the patterns of mRNA level for individual finger clones vary greatly during early development. The prevalence of these structures in the oocyte suggests that part of the maternal information for the realization of the developmental program utilized in Xenopus embryogenesis might be transmitted in the form of regulatory, nucleic-acid-binding proteins.  相似文献   

9.
AGL15, a MADS domain protein expressed in developing embryos.   总被引:18,自引:4,他引:14       下载免费PDF全文
To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo.  相似文献   

10.
11.
12.
Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.  相似文献   

13.
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy. Several genes have been identified and cloned from the carrot system. These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood. Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using aCuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes  相似文献   

14.
15.
Citrus exhibits polyembryonic seed development, an apomictic process in which many maternally derived embryos arise from the nucellus surrounding the developing zygotic embryo. Citrus seed storage proteins were used as markers to compare embryogenesis in developing seeds and somatic embryogenesis in vitro. The salt-soluble, globulin protein fraction (designated citrin) was purified from Citrus sinensis cv Valencia seeds. Citrins separated into two subunits averaging 22 and 33 kD under denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A cDNA clone was isolated representing a citrin gene expressed in seeds when the majority of embryos were at the early globular stage of embryo development. The predicted protein sequence was most related to the globulin seed storage proteins of pumpkin and cotton. Accumulation of 33-kD polypeptides was first detected in polyembryonic Valencia seeds when the majority of embryos were at the globular stage of development. Somatic Citrus embryos cultured in vivo were observed to initiate 33-kD polypeptide accumulation later in embryo development but accumulated these peptides at only 10 to 20% of the level observed in polyembryonic seeds. Therefore, factors within the seed environment must influence the higher quantitative levels of citrin accumulation in nucellar embryos developing in vivo, even though nucellar embryos, like somatic embryos, are not derived from fertilization events.  相似文献   

16.
17.
We report the primary structure of three novel, putative zinc metalloproteases designated ADAM-TS5, ADAM-TS6, and ADAM-TS7. All have a similar domain organization, comprising a preproregion, a reprolysin-type catalytic domain, a disintegrin-like domain, a thrombospondin type-1 (TS) module, a cysteine-rich domain, a spacer domain without cysteine residues, and a COOH-terminal TS module. These genes are differentially regulated during mouse embryogenesis and in adult tissues, with Adamts5 highly expressed in the peri-implantation period in embryo and trophoblast. These proteins are similar to four other cognate gene products, defining a distinct family of human reprolysin-like metalloproteases, the ADAM-TS family. The other members of the family are ADAM-TS1, an inflammation-induced gene, the procollagen I/II amino-propeptide processing enzyme (PCINP, ADAM-TS2), and proteins predicted by the KIAA0366 and KIAA0688 genes (ADAM-TS3 and ADAM-TS4). Individual ADAM-TS members differ in the number of COOH-terminal TS modules, and some have unique COOH-terminal domains. The ADAM-TS genes are dispersed in human and mouse genomes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号