首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
小麦Beclin1类似基因的分子克隆与鉴定   总被引:2,自引:0,他引:2  
以小麦 簇毛麦 (Triticumaestivum Haynal diavillosa) 6VS/6AL易位系 92R1 3 7为材料 ,应用mRNA差异显示和快速扩增cDNA末端 (rapidam plificationofcDNAends,RACE)技术对在白粉菌(Blumeriagraminis)诱导后表达增强的基因进行了克隆。分离到一个与拟南芥Beclin1类似基因同源的全长cDNA克隆 ,暂定名为小麦Beclin1类似基因。它编码 441个氨基酸组成的多肽。二级结构推导显示与人类Beclin相似 ,具有螺旋结构。Northern杂交分析表明 ,小麦Beclin1类似基因在白粉菌诱导后表达增强。Southern分析证明 ,小麦Beclin1类似基因为单拷贝基因  相似文献   

2.
小麦硫代硫酸硫转移酶类似基因的克隆与定位   总被引:8,自引:2,他引:6  
小麦-簇毛麦6VS/6AL易位系92R137含有抗白粉病基因Pm21。为了研究该易位系的抗病机理,应用mRNA差异显示和快速扩增cDNA未端(Rapid Amplification of cDNAEnd,RACE)技术对在白粉菌诱导后表达增强的基因进行了克隆,分离到1个命名为TaTST的全长cDNA序列。Northern杂交分析表明,TaTST基因在白粉菌诱导后表达明显增强,24h达到峰值,氨基酸序列同源性分析表明,TaTST与Datisca glomerata的硫代硫酸硫转移酶基因(rho-danese,EC,2.8.1.1)序列有64%相同,80%相似,用中国春缺体/四体系和端体系Southern杂交和基因特异性引物扩增(gene specific primer-PCR)将TaTST基因定位在小麦6B染色体短臂上,Southern杂交表明,该基因为单拷贝基因,由于在杨麦5号和6VS/6AL易位系间存在明显多态,可以推测在6VS上有TaTST的同源基因,TaTST是从小麦中分离的新基因。白粉菌诱导后的表达变化提示;TaTST与小麦抗白粉病反应有关。  相似文献   

3.
白粉病和黄矮病是小麦生产上的重要病害,近几年来这两种病害经常在我国一些小麦产区同时发生。为解决该问题,本研究通过杂交、回交方法将抗黄矮病的Bdv2基因(源自于YW642)和抗白粉病的Pm21基因(源自于CB037)聚合在一起,育成了兼抗黄矮病和白粉病的小麦新材料。通过田间抗病性鉴定与分子标记辅助选择相结合,得到聚合了Bdv2基因和Pm21基因的BC1代小麦22株,F2代小麦51株。农艺性状调查显示,这些含Pm21和Bdv2基因的双抗白粉病和黄矮病小麦新材料的农艺性状优于感病植株和原先的亲本,可以在小麦白粉病和黄矮病兼性抗病育种中作为优异种质资源加以利用。  相似文献   

4.
小麦3个被白粉菌诱导基因表达的分析   总被引:5,自引:0,他引:5  
含有抗白粉病基因Pm2 1的小麦 簇毛麦 6VS/6AL易位系在接种白粉菌后 ,叶片无任何病症。应用mRNA差异显示技术从小麦 簇毛麦 6VS/ 6AL易位系分离到 3个叶绿体蛋白基因片段 ,它们是TaD5、TaD2 3和TaD33,3个基因片段分别与小麦叶绿体基因rbcL ,拟斯卑尔脱山羊草叶绿体RNA聚合酶α亚基基因rpoA和大麦 1,5 二磷酸核酮糖羧化酶活化酶基因(Rubiscoactivase ,RcaA2 )同源性达 97%、98%和 88%。据此推测TaD5、TaD2 3和TaD33分别是 6VS/ 6AL易位系中的rbcL、rpoA和 1,5 二磷酸核酮糖羧化酶活化酶基因的片断。Northern分析表明这 3个叶绿体基因的表达在白粉菌诱导下得到增强。叶绿体基因组含有胸腺嘧啶重复区是在mRNA差异显示中克隆到叶绿体基因组基因的原因  相似文献   

5.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

6.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most serious wheat diseases. The rapid evolution of the pathogen's virulence, due to the heavy use of resistance genes, necessitates the expansion of resistance gene diversity. The common wheat line D57 is highly resistant to powdery mildew. A genetic analysis using an F(2) population derived from the cross of D57 with the susceptible cultivar Yangmai 158 and the derived F(2:3) lines indicated that D57 carries two dominant powdery mildew resistance genes. Based on mapping information of polymorphic markers identified by bulk segregant analysis, these two genes were assigned to chromosomes 5DS and 6DS. Using the F(2:3) lines that segregated in a single-gene mode, closely linked PCR-based markers were identified for both genes, and their chromosome assignments were confirmed through linkage mapping. The gene on chromosome 5DS was flanked by Xgwm205 and Xmag6176, with a genetic distance of 8.3 cM and 2.8 cM, respectively. This gene was 3.3 cM from a locus mapped by the STS marker MAG6137, converted from the RFLP marker BCD1871, which was 3.5 cM from Pm2. An evaluation with 15 pathogen isolates indicated that this gene and Pm2 were similar in their resistance spectra. The gene on chromosome 6DS was flanked by co-segregating Xcfd80 and Xmag6139 on one side and Xmag6140 on the other, with a genetic distance of 0.7 cM and 2.7 cM, respectively. This is the first powdery mildew resistance gene identified on chromosome 6DS, and plants that carried this gene were highly resistant to all of the 15 tested pathogen isolates. This gene was designated Pm45. The new resistance gene in D57 could easily be transferred to elite cultivars due to its common wheat origin and the availability of closely linked molecular markers.  相似文献   

7.
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp. tritici)表现高抗,但其抗性基因来源不清。通过染色体C-分带和1RS染色体特异性SCAR标记鉴定, 表明它是一个小麦-黑麦(Triticum aestivum - Secale cereale)1BL/1RS异易位系。通过对中国春×99-2439杂交F2代分离群 体抗性鉴定和1RS染色体臂检测结果分析, 证明该抗病基因不在1RS染色体臂上。用单孢小麦白粉菌分离株对其抗性遗传进行研究, 结果表明, 99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制。由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病, 而99-2439高抗混和白粉菌和5个单孢分离菌株, 所以, 99-2439所携带的抗白粉病基因不同于Pm5a。  相似文献   

8.
一个小麦丝氨酸—苏氨酸蛋白激酶基因的克隆和分析   总被引:8,自引:0,他引:8  
用mRNA差异显示技术在含有抗白粉病基因Pm2 1的小麦 (TriticumaestivumL .)_簇毛麦 (Haynaldiavillosa)6VS/ 6AL易位系 92R137中分离与抗白粉病相关的基因 ,获得一个命名为TaPK1的全长cDNA克隆。序列分析表明 ,它与大豆 (Glycinemax (L .)Merr.)蛋白激酶基因GmPK6高度同源。经推测 ,TaPK1编码 416个氨基酸的多肽 ,属丝氨酸_苏氨酸蛋白激酶家族 ,并具酪氨酸激酶特性。TaPK1是从小麦中分离的新基因。  相似文献   

9.
普通小麦99-2439中的白粉病抗性遗传   总被引:6,自引:0,他引:6  
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp.tritici)表现高抗,但其抗性基因来源不清.通过染色体C-分带和IRS染色体特异性SCAR标记鉴定,表明它是一个小麦-黑麦(Triticum aestivum-Secale cereale)lBL/1RS异易位系.通过对中国春×99-2439杂交F2代分离群体抗性鉴定和1RS染色体臂检测结果分析,证明该抗病基因不在1RS染色体臂上.用单孢小麦白粉菌分离株对其抗性遗传进行研究,结果表明,99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制.由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病,而99-2439高抗混和白粉菌和5个单孢分离菌株,所以,99-2439所携带的抗白粉病基因不同于Pm5a.  相似文献   

10.
用mRNA差异显示技术在含有抗白粉病基因Pm21的小麦(Tri ticum aestivum L.) -簇毛麦(Haynaldia villosa) 6VS /6AL易位系92R137中分离与抗白粉病相关的基因,获得一个命名为TaPK1的全长cDNA克隆.序列分析表明,它与大豆(Glycine max (L.) Merr.)蛋白激酶基因GmPK6高度同源.经推测,TaPK1 编码416个氨基酸的多肽,属丝氨酸-苏氨酸蛋白激酶家族,并具酪氨酸激酶特性.TaPK1是从小麦中分离的新基因.  相似文献   

11.
L Qi  M Cao  P Chen  W Li  D Liu 《Génome》1996,39(1):191-197
A new powdery mildew resistance gene designated Pm21, from Haynaldia villosa, a relative of wheat, has been identified and incorporated into wheat through an alien translocation line. Cytogenetic and biochemical analyses showed that chromosome arms 6VS and 6AL were involved in this translocation. Random amplified polymorphic DNA (RAPD) analysis was performed on recipient wheat cultivar Yangmai 5, the translocation line, and H. villosa with 180 random primers. Eight of the 180 primers amplified polymorphic DNA in the translocation line, and the same results were obtained in four replications. Furthermore, RAPD analysis was reported for substitution line 6V, seven addition lines (1V-7V), and the F1, as well as F2 plants of (translocation line x 'Yangmai 5'), using two of the eight random primers. One RAPD marker, specific to chromosome arm 6VS, OPH17-1900, could be used as a molecular marker for the detection of gene Pm21 in breeding materials with powdery mildew resistance introduced from H. villosa. Key words : RAPD analysis, 6VS-specific marker, Pm21, Erysiphe graminis f.sp. tritici, Triticum aestivum - Haynaldia villosa translocation.  相似文献   

12.
选用来自我国不同地区的20个白粉病菌毒性菌株,对54个CIMMYT小麦品种(系)进行抗病性分析.结果表明:(1)34个品种(系)含有抗病基因,以Pm8基因出现频率最高,有15个品种(系)携带该基因;(2)参试主效基因中,Pm1、Pm3e、Pm5、Pm6和Pm7基因已丧失对我国白粉菌的抗性,Pm16和Pm20基因的抗性最强;(3)50个1B/1R易位系品种(系)中31个含有抗病基因,48%的抗病1B/1R易位系可检测到Pm8基因.根据田间成株期病程曲线下面积(AUDPC)聚类分析结果,可将54份材料分为高抗、中抗、中感和高感4类,7个品种(系)不含任何主效抗病基因而田间表现中到高的抗性,是典型慢病性品种.  相似文献   

13.
小麦白粉病抗性基因的聚合及其分子标记辅助选择   总被引:43,自引:0,他引:43  
采用了在早代进行抗性鉴定、淘汰感病株、保留抗病株继续种植、较晚世代(F4代)进行抗性鉴定结合分子标记辅助选择的策略,提高了选到聚合抗性植株的效率。利用与Pm2、Pm4α、Pm8、Pm21紧密连锁或共分离的RFLP标记和PCR标记(SCAR标记),对含有这些基因的优良品系间配制的杂交组合的F4代进行了分子标记辅助育种选择,并结合抗性鉴定,筛选到14株Pm4α Pm2I的植株,16株Pm2 Pm4α的植株,6株Pm8 Pm21的植株。应该引起注意的是,Pm2 Pm4α对混合白粉病菌的抗性达到高抗至免疫水平,而Pm2和Pm4α单独存在时抗性较差,表明聚合抗病基因植株的抗性提高了,为培育具有持久性抗性的品系或品种提供了新思路,它在实践和理论研究上都将具有重要意义。  相似文献   

14.
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici (Bgt), has become a serious disease and caused severe yield losses in the wheat production worldwide. Resistance gene(s) in wheat cultivars can be quickly overcome by newly evolved pathogen races when these genes are employed for long time or in a large area. It is urgent to search for new sources of resistance to be used in wheat breeding. Tabasco is a German resistant cultivar and a new source of resistance gene(s) to PM. An F(2) population was developed from a cross between Tabasco and a Chinese susceptible cultivar Ningnuo 1. Infection types in 472 F(2) plants and 436 F(2-3) families were evaluated by inoculating plants with isolate Bgt19. Results showed that a single dominant gene, designed Pm46, controlled powdery mildew resistance in Tabasco. This gene was located to the short arm of chromosome 5D (5DS) and flanked by simple sequence repeat markers Xgwm205 and Xcfd81 at 18.9?cM apart. Because another resistance gene Pm2 was also located on 5DS, 15 Bgt isolates were used to inoculate Tabasco and Ulka/8*Cc (Pm2 carrier). The results showed that Tabasco was highly resistant to all of the 15 isolates tested, while Ulka/8*Cc was susceptible to 4 of the isolates, suggesting that Tabasco may carry resistant gene(s) different from Pm2 gene in Ulka/8*Cc. To test the allelism between Pm46 and Pm2, an F(2) population between Tabasco and Ulka/8*Cc was developed. Isolate Bgt2, avirulent to both parents, was used to evaluate the F(2) population and two susceptible plants were identified from 536 progenies with F(2) plants. This result indicated that Pm46 is not allelic to Pm2. Therefore, Pm46 is a new gene for PM resistance identified in this study.  相似文献   

15.
Wheat-Dasypyrum villosum translocated chromosomes T6V#2S?6AL and T6V#4S?6DL are known to confer excellent resistance to wheat powdery mildew (PM). However, it is difficult to distinguish the two sources of PM resistance genes through multi-pathotype testing because to date no virulence for them has been found. To reveal the relationship between the PM resistance genes from the two translocations, the sequence of the Stpk-V gene, a key member of powdery mildew resistance locus Pm21, was used as a reference to isolate homologous genes from a D. villosum accession No.1026 and its derivatives 6V#4(6D) disomic substitution (DS) line RW15 and T6V#4S?6DL translocation line Pm97033. Two genes Stpk-V2 and Stpk-V3 were cloned from No.1026. Sequence alignment showed that Stpk-V2 and Stpk-V3 shared 98.2 % and 96.2 % of their DNA and 99.3 % and 100 % of their amino acids in identity with Stpk-V. Compared with Stpk-V, a 22-bp direct sequence repeat and a miniature inverted-repeat transposable element (MITE) were found in the intron 4 of Stpk-V2 and Stpk-V3, respectively. However, Stpk-V2 was not present in DS line RW15 and translocation line Pm97033 based on the PCR result, indicating that Stpk-V2 did not contribute to the PM resistance of RW15 and Pm97033. In the promoter region, a 78-bp insertion was found not only in Stpk-V2 and Stpk-V3, but also in its orthologous gene Stpk-A of wheat. In addition, there was a 17 bp/8 bp deletion/insertion in the putative promoter of Stpk-V3 in comparison with that of Stpk-V/Stpk-V2. Real-time quantitative RT-PCR analysis indicated that the expression levels of Stpk-V and Stpk-V3 genes in the translocation lines were induced by the pathogen, but Stpk-V had a higher expression level than Stpk-V3 at 12 h after inoculation with Bgt. The diversity of Stpk-V gene will help to explore new resistance genes to PM in D. villosum for wheat breeding.  相似文献   

16.
对99份硬粒小麦-粗山羊双二倍体用北京地区流行的5号白粉菌生理小种进行了白粉病抗性鉴定,筛选出11个苗期抗病的双二倍体材料和2个全生育期抗病的材料M53和M81。对M53和M81及其硬粒小麦和粗山羊草亲本进行的抗白粉病鉴定结果表明,其抗性来源于粗山羊草。与M53和M81具有相同硬粒小麦亲本、不同粗山羊草亲本双二倍体的抗性结果也表明抗性基因来源于粗山羊草。对M53和M81的抗性遗传分析表明,它们均携带1个单显性抗病基因。用14个白粉菌生理小种对已知抗病基因品系与M53和M81两份待测材料进行接种鉴定,结果表明,M53和M81与已知基因的抗菌谱均不相同,M53与M81的抗菌谱也不相同,说明M53和M81各自分别携带1个新的显性抗白粉病基因。  相似文献   

17.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

18.
小偃麦衍生品系CH7086抗白粉基因的遗传及SSR分析   总被引:1,自引:0,他引:1  
CH7086是兼抗白粉病、条锈病的小麦新品系,衍牛于来自十倍体长穗偃麦草的八倍体小偃麦与普通小麦的杂种后代.温室接种鉴定结果显示,CH7086对白粉病菌系E09、E21、E26均表现为免疫,且其抗件来自长穗偃麦草.抗性遗传分析表明CH7086的白粉病抗性由1对显性基因控制,暂定名为MlCH86.应用分离群体分组法(BSA)对从CH5241×CH7086的F2中随机选取的95个单株进行微卫星标记检测,发现位于2BL、2DL上的SSR位点Xbarc159在双亲和抗、感池间有特异性,并与抗性基因MlCH86连锁,其遗传距离为10.8 cM.用中国春第2部分同源群的缺体-四体系和双端体系进行验证,进一步将MlCH86定位在2BL上.用白粉病菌系E21、E26接种鉴定表明,MlCH86的抗性反应明显不同于2BL上已命名的抗性基因Pm6、Pm33.根据抗性基因的来源、染色体位置及抗性反应,初步推断存在于CH7086的抗性基因来自长穗偃麦草,它不同于已有的抗白粉病基因,可能是一个新基因.  相似文献   

19.
Totipotent cDNA libraries representative of all the potentially expressed sequences in a genome would be of great benefit to gene expression studies. Here, we report on an innovative method for creating such a library for durum wheat (Triticum turgidum L. var. durum) and its application for gene discovery. The use of suitable quantities of 5-azacytidine during the germination phase induced the demethylation of total DNA, and the resulting seedlings potentially express all of the genes present in the genome. A new wheat microarray consisting of 4925 unigenes was developed from the totipotent cDNA library and used to screen for genes that may contribute to differences in the disease resistance of two near-isogenic lines, the durum wheat cultivar Latino and the line 5BIL-42, which are respectively susceptible and resistant to powdery mildew. Fluorescently labeled cDNA was prepared from the RNA of seedlings of the two near-isogenic wheat lines after infection with a single powdery mildew isolate under controlled conditions in the greenhouse. Hybridization to the microarray identified six genes that were differently expressed in the two lines. Four of the sequences could be assigned putative functions based on their similarity to known genes in public databases. Physical mapping of the six genes localized them to two regions of the genome: the centromeric region of chromosome 5B, where the Pm36 resistance gene was previously localized, and chromosome 6B.  相似文献   

20.
Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n = 2x = 14, genome VV), a species related to wheat, is highly resistant to powdery mildew. The powdery mildew resistance gene Pm21 from H. villosa was introduced into common wheat by means of a translocation line T6VS·6AL, where the 6VS chromosome arm of H. villosa was joined at the centromere with wheat chromosome arm 6AL. To develop small alien translocations, especially interstitial translocations of small alien chromosome segments, we irradiated mature female gametes of a T6VS·6AL translocation line with gamma rays. More than 20 new translocations and deletions of 6V chromatin were obtained and subsequently used to map Pm21. Pm21 was located in a small region (FL 0.45–0.58) by genomic in situ hybridization, molecular marker analysis, and powdery mildew response. Two homozygous translocation lines with small H. villosa chromosome fragments carrying Pm21 were identified by fluorescence in situ hybridization and molecular marker analysis: an interstitial translocation in which a small fragment of 6VS is inserted into chromosome 4B and a terminal translocation with a small fragment of 6VS inserted into 1A. These small alien translocations are being transferred into an adapted elite wheat background by backcrossing to allow their easy use in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号