首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

2.
The constraints on nucleotide sequences of highly and weakly expressed genes from Escherichia coli have been analysed and compared. Differences in synonymous codon spectra in highly and weakly expressed genes lead to different frequencies of nucleotides (in the first and third codon positions) and dinucleotides in the two groups of genes. It has been found that the choice of synonymous codons in highly expressed genes depends on the nucleotides adjacent to the codon. For example, lysine is preferably encoded by the AAA codon if guanosine is 3' to the lysine codon (AAA-G, P less than 10(-9)). And, on the contrary, AAG is used more often than AAA (P less than 0.001) if cytidine is 3' adjacent to lysine. Guanosine occurs more frequently than adenosine 5' to all the lysine codons (AAR, P less than 10(-5), i.e. NNG codons are preferred over the synonymous NNA codons 5' to the positions of lysine in the genes. The context effect was observed in nonsense and missense suppression experiments. Therefore, a hypothesis has been suggested that the efficiency of translation of some codons (for which the constraints on the adjacent nucleotides were found) can be modulated by the codon context. The rules for preferable synonymous codon choice in highly expressed genes depending on the nucleotides surrounding the codon are presented. These rules can be used in the chemical synthesis of genes designed for expression in E. coli.  相似文献   

3.
4.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

5.
The base sequence around nonsense codons affects the efficiency of nonsense codon suppression. Published data, comparing different nonsense sites in a mRNA, implicate the two bases downstream of the nonsense codon as major determinants of suppression efficiency. However, the results we report here indicate that the nature of the contiguous upstream codon can also affect nonsense suppression, as can the third (wobble) base of the contiguous downstream codon. These conclusions are drawn from experiments in which the two Ser codons UCU233 and UCG235 in a nonsense mutant form (UGA234) of the trpA gene in Escherichia coli have been replaced with other Ser codons by site-directed mutagenesis. Suppression of these trpA mutants has been studied in the presence of a UGA nonsense suppressor derived from glyT. We speculate that the non-site-specific effects of the two adjacent downstream bases may be largely at the level of the termination process, whereas more site-specific or codon-specific effects may operate primarily on the activity of the suppressor tRNA.  相似文献   

6.
The influence of mRNA context on nonsense codon suppression has been studied by suppression measurements at one site in the Escherichia coli trpE gene and at two sites in the trpA gene. The ratio of suppression efficiencies of amber and ochre codons at each site (homotopic pairs) has been compared using ochre suppressing derivatives of tRNATyr. This ratio is independent of differential effects of the inserted amino acid on enzyme function. We have found that mRNA context can change the ratio of suppression efficiencies of homotopic nonsense codons at the three sites in the trp gene system over a ten-fold range. The causes of such variation, and, in particular the effect of certain adjacent nucleotides on nonsense codon suppression are considered.  相似文献   

7.
An effect of codon context on the mistranslation of UGU codons in vitro   总被引:2,自引:0,他引:2  
Effects of codon context on nonsense codon suppression may act either through release factor recognition of termination codons or aminoacyl-tRNA selection by the ribosome. The latter hypothesis has been studied by comparing misreading by Escherichia coli UGA suppressor tryptophan tRNA of UGU (cysteine) codons in two synthetic polymers, poly(U-G) and poly( U5 , G), which differ in sequence around the UGU codons. In vitro translation of these polymers in a cell-free system from E. coli yielded selection errors of 4 X 10(-3) and 1.75 X 10(-2) for UGU codons in poly(U-G) and poly( U5 , G), respectively. This difference suggests that codon context may significantly affect misincorporation of amino acids into protein.  相似文献   

8.
K Zerfass  H Beier 《The EMBO journal》1992,11(11):4167-4173
RNA-1 molecules from tobacco rattle virus (TRV) and pea early-browning virus (PEBV), two members of the tobravirus group, have recently been shown to contain internal, in-frame UGA termination codons which are suppressed in vitro. Our results suggest that a UGA stop codon also exists in RNA-1 of pepper ringspot virus (PRV), another tobravirus. UGA suppression may therefore be a universal feature of the expression of tobravirus genomes. We have isolated two natural suppressor tRNAs from uninfected tobacco plants on the basis of their ability to promote readthrough over the leaky UGA codon of TRV RNA-1 in a wheat germ extract depleted of endogenous mRNAs and tRNAs. Their amino acid acceptance and nucleotide sequences identify the two UGA-suppressor tRNAs as chloroplast (chl) and cytoplasmic (cyt) tryptophan-specific tRNAs with the anticodon CmCA. These are the first UGA suppressor tRNAs to be identified in plants. They have several interesting features. (i) Chl tRNA(Trp) suppresses the UGA stop codon more efficiently than cyt tRNA(Trp). (ii) Chl tRNA(Trp) contains an A24:U11 pair in the D-stem as does the mutated Escherichia coli UGA-suppressor tRNA(Trp) which is a more active suppressor than wild-type tRNA(Trp). (iii) The suppressor activity of chl tRNA(Trp) is dependent on the nucleotides surrounding the stop codon because it recognizes UGA in the TRV context but not the UGA in the beta-globin context.  相似文献   

9.
Effects on translation in vivo by modification deficiencies for 2-methylthio-N6-isopentenyladenosine (ms2i6A) (Escherichia coli) or 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) (Salmonella typhimurium) in tRNA were studied in mutant strains. These hypermodified nucleosides are present on the 3' side of the anticodon (position 37) in tRNA reading codons starting with uridine. In E. coli, translational error caused by tRNA was strongly reduced in the case of third-position misreading of a tryptophan codon (UGG) in a particular codon context but was not affected in the case of first-position misreading of an arginine codon (CGU) in another codon context. Misreading of UGA nonsense codons at two different positions was codon context dependent. The efficiencies of some tRNA nonsense suppressors were decreased in a tRNA-dependent manner. Suppressor tRNA which lacks ms2i6A-ms2io6A becomes more sensitive to codon context. Our results therefore indicate that, besides improving translational efficiency, ms2i6A37 and ms2io6A37 modifications in tRNA are also involved in decreasing the intrinsic codon reading context sensitivity of tRNA. Possible consequences for regulation of gene expression are discussed.  相似文献   

10.
The 5' untranslated leader (Omega sequence) of tobacco mosaic virus (TMV) genomic RNA was utilized as a translational enhancer sequence in expression of the 17 kDa putative movement protein (pr17) of potato leaf roll luteovirus (PLRV). In vitro translation of RNAs transcribed from appropriate chimeric constructs, as well as their expression in transgenic potato plants, resulted in the expected wild-type pr17 protein, as well as in larger translational products recognized by pr17-specific antisera. Mutational analyses revealed that the extra proteins were translated by non-canonical initiation at AUU codons present in the wild-type Omega sequence. In the plant system translation initiated predominantly at the AUU codon at positions 63-65 of the Omega sequence. Additional AUU codons in a different reading frame of the Omega sequence also showed the capacity for efficient translation initiation in vitro. These results extend the previously noted activity of the TMV 5' leader sequence in ribosome binding and translation enhancement in that the TMV translation enhancer can mediate non-canonical translation initiation in vitro and in vivo.  相似文献   

11.
Genomes of mammalian type C retroviruses contain a UAG termination codon between the gag and pol coding regions. The pol region is expressed in the form of a gag-pol fusion protein following readthrough suppression of the UAG codon. We have used oligonucleotide-directed mutagenesis to change the UAG in Moloney murine leukemia virus to UAA or UGA. These alternate termination codons were also suppressed, both in infected cells and in reticulocyte lysates. Thus, the signal or context inducing suppression of UAG in wild-type Moloney murine leukemia virus is also effective with UAA and UGA. Further, mammalian cells and cell extracts contain tRNAs capable of translating UAA and UGA as amino acids. To our knowledge, this is the first example of natural suppression of UAA in higher eucaryotes.  相似文献   

12.
The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production.  相似文献   

13.
The three major glutamine tRNAs of Tetrahymena thermophila were isolated and their nucleotide sequences determined by post-labeling techniques. Two of these tRNAsGln show unusual codon recognition: a previously isolated tRNAGlnUmUA and a second species with CUA in the anticodon (tRNAGlnCUA). These two tRNAs recognize two of the three termination codons on natural mRNAs in a reticulocyte system. tRNAGlnUmUA reads the UAA codon of α-globin mRNA and the UAG codon of tobacco mosaic virus (TMV) RNA, whereas tRNAGlnCUA recognizes only UAG. This indicates that Tetrahymena uses UAA and UAG as glutamine codons and that UGA may be the only functional termination codon. A notable feature of these two tRNAsGln is their unusually strong readthrough efficiency, e.g. purified tRNAGlnCUA achieves complete readthrough over the UAG stop codon of TMV RNA. The third major tRNAGln of Tetrahymena has a UmUG anticodon and presumably reads the two normal glutamine codons CAA and CAG. The sequence homology between tRNAGlnUmUG and tRNAGlnUmUA is 81%, whereas that between tRNAGlnCUA and tRNAGlnUmUA is 95%, indicating that the two unusual tRNAsGln evolved from the normal tRNAGln early in ciliate evolution. Possible events leading to an altered genetic code in ciliates are discussed.  相似文献   

14.
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon–codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon–codon affinity, the extent of base modifications within or 3′ of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3′ side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.  相似文献   

15.
The modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) is present immediately to the 3' side of the anticodon (position 37) in tRNAs that read codons starting with uridine and hence include amber (UAG) suppressor tRNAs. We have used strains of Salmonella typhimurium that differ only in their ability to synthesize ms2io6A in order to determine specifically how this modified nucleoside influences the efficiency of amber suppression in two codon contexts differing by only which base is 3' of the codon. The results show that the presence of the modified nucleoside ms2io6A not only improves the efficiency of the suppressor tRNAs but also allows them to distinguish between at least two bases 3' of the codon. Thus, the presence of ms2io6A reduces the intrinsic codon context sensitivity of the tRNA and specifically counteracts an unfavourable nucleotide on the 3' side of the codon. The possible codon-anticodon interactions responsible for this effect are discussed.  相似文献   

16.
Summary We have examined the response of phage T4 nonsense mutations located at various sites within the same cistron to different suppression agents. A wide range of suppression efficiency is found for both ochre (UAA) and amber (UAG) mutations under conditions where suppression provides a measurement of the amount of chain propagation past the mutated site. We have established a relationship between our measurement-the size of the phage yield-and the amount of rIIB product present in the infection. Our data suggest that the 1000-fold range of variations in yields observed in the rIIB cistron corresponds to a 30-fold range of variation in the level of rIIB product, i.e. in the relative frequency of chain propagation past the various nonsense codons included in our test.From the parallelism of response of any particular mutant to very different suppression mechanisms we conclude that the efficiency of suppression is site specific, that is to say, that the main factor determining the frequency of chain propagation at a nonsense codon by any type of suppression mechanism is the nucleotide sequence adjacent to the nonsense codon (reading context).We propose that the recognition of a natural termination signal involves a sequence longer than a nonsense codon and that nonsense codons outside of their natural environment induce variable termination rates which are reflected in the suppression potential.  相似文献   

17.
18.
Multiple polypeptides encoded by tobacco mosaic virus (TMV) RNA in the messenger-dependent rabbit reticulocyte lysate are not attributable to contaminating 3′-coterminal RNA fragments, multiple leaky termination codons or endonuclease activity opening-up legitimate or spurious internal initiation sites. Quantitative analysis of polypeptides encoded over a range of added RNA concentrations from 0.09 μg·ml?1 to 180 μg·ml?1 compared wi preparation, or with RNA extracted from the alkali-stable fraction of TMV suggest that apart from four legitimate virus-coded products of apparent Mr approx. 165 000, 110 000, 30 000 and 17 500 all other polypeptides arise from the overlapping 5′-proximal cistrons either by (i) site-selective endonucleolytic cleavage, (ii) sense codon misreading, or (iii) specific regions of secondary structure on TMV RNA which impede ribosome translocation.  相似文献   

19.
The translation machinery recognizes codons that enter the ribosomal A site with remarkable accuracy to ensure that polypeptide synthesis proceeds with a minimum of errors. When a termination codon enters the A site of a eukaryotic ribosome, it is recognized by the release factor eRF1. It has been suggested that the recognition of translation termination signals in these organisms is not limited to a simple trinucleotide codon, but is instead recognized by an extended tetranucleotide termination signal comprised of the stop codon and the first nucleotide that follows. Interestingly, pharmacological agents such as aminoglycoside antibiotics can reduce the efficiency of translation termination by a mechanism that alters this ribosomal proofreading process. This leads to the misincorporation of an amino acid through the pairing of a near-cognate aminoacyl tRNA with the stop codon. To determine whether the sequence context surrounding a stop codon can influence aminoglycoside-mediated suppression of translation termination signals, we developed a series of readthrough constructs that contained different tetranucleotide termination signals, as well as differences in the three bases upstream and downstream of the stop codon. Our results demonstrate that the sequences surrounding a stop codon can play an important role in determining its susceptibility to suppression by aminoglycosides. Furthermore, these distal sequences were found to influence the level of suppression in remarkably distinct ways. These results suggest that the mRNA context influences the suppression of stop codons in response to subtle differences in the conformation of the ribosomal decoding site that result from aminoglycoside binding.  相似文献   

20.
Codon contexts in enterobacterial and coliphage genes   总被引:6,自引:0,他引:6  
This investigation of the codon context of enterobacteria, plasmid, and phage protein genes was based on a search for correlations between the presence of one base type at codon position III and the presence of another base type at some other position in adjacent codons. Enterobacterial genes were compared with eukaryotic sequences for codon context effects. In enterobacterial genes, base usage at codon position III is correlated with the third position of the upstream adjacent codon and with all three positions of the downstream codon. Plasmid genes are free of context biases. Phage genes are heterogeneous: MS2 codons have no biased context, whereas lambda genes partly follow the trends of the host bacterium, and T7 genes have biased codon contexts that differ from those of the host. It has been reported that two successive third-codon positions tend to be occupied by two purines or two pyrimidines in Escherichia coli genes of low expression level. Here, the extent to which highly expressed protein genes can modulate base usage at two successive codon positions III, given the constraints on codon usage and protein sequence that act on them, was quantified. This demonstrates that the above-mentioned favored patterns are not a characteristic of weakly expressed genes but occur in all genes in which codon context can vary appreciably. The correlation between successive third-codon positions is a distinct feature of enterobacteria and of some phages, one that may result from adaptation of gene structure to translational efficiency. Conversely, codon context in yeast and human genes is biased--but for reasons unrelated to translation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号