首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cysteine protease cathepsin S is highly expressed in malignant tissues. By using a mouse model of multistage murine pancreatic islet cell carcinogenesis in which cysteine cathepsin activity has been functionally implicated, we demonstrated that selective cathepsin S deficiency impaired angiogenesis and tumor cell proliferation, thereby impairing angiogenic islet formation and the growth of solid tumors, whereas the absence of its endogenous inhibitor cystatin C resulted in opposite phenotypes. Although mitogenic vascular endothelial growth factor, transforming growth factor-beta1, and the anti-angiogenic endostatin levels in either serum or carcinoma tissue extracts did not change in cathepsin S- or cystatin C-null mice, tumor tissue basic fibroblast growth factor and serum type 1 insulin growth factor levels were higher in cystatin C-null mice, and serum type 1 insulin growth factor levels were also increased in cathepsin S-null mice. Furthermore, cathepsin S affected the production of type IV collagen-derived anti-angiogenic peptides and the generation of bioactive pro-angiogenic gamma2 fragments from laminin-5, revealing a functional role for cathepsin S in angiogenesis and neoplastic progression.  相似文献   

2.
Tumor growth is associated with angiogenesis and inflammation and the endogenous lipid, platelet activating factor (PAF), is a pro-inflammatory and pro-angiogenic mediator. We therefore measured tumor growth, angiogenesis and inflammation in normal (WT) mice and those lacking the receptor for PAF, through gene deletion (PAFR-KO). Growth of solid tumors derived from colon 26 cells was not altered but that from Ehrlich cells was markedly (5-fold) increased in the PAFR-KO mice, relative to the WT strain. Angiogenesis, as tumor content of VEGF or hemoglobin, was increased in both tumors from the mutant strain. Inflammation, as neutrophil and macrophage accumulation and chemokine (CXCL2 and CCL2) content of tumors, was decreased or unchanged in the tumors implying an overall decrease in the inflammatory response in the PAFR-KO strain. We also assessed growth of the Ehrlich tumor in its ascites form, after i.p. injection. Here growth (ascites volume) was inhibited by about 30%, but neutrophil and macrophage numbers were increased in the ascites fluid from the PAFR-KO mice. Angiogenesis in the peritoneal wall, which is not invaded by the tumor cells, was increased but leukocyte infiltration decreased in the mutant strain. Our results show, unexpectedly, that tumor-induced angiogenesis was increased in mice lacking response to PAF, from which we infer that in normal (WT) mice, PAF is anti-angiogenic. Further, although growth was still associated with angiogenesis in PAFR-KO mice, growth was not correlated with inflammation (leukocyte accumulation).  相似文献   

3.
Chung TW  Kim SJ  Choi HJ  Kim KJ  Kim MJ  Kim SH  Lee HJ  Ko JH  Lee YC  Suzuki A  Kim CH 《Glycobiology》2009,19(3):229-239
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.  相似文献   

4.
Regulation of tumor angiogenesis by thrombospondin-1   总被引:8,自引:0,他引:8  
Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.  相似文献   

5.
Angiogenesis is important for the growth of solid tumors. The breaking of the immune tolerance against the molecule associated with angiogenesis should be a useful approach for cancer therapy. However, the immunity to self-molecules is difficult to elicit by a vaccine based on autologous or syngeneic molecules due to immune tolerance. Basic fibroblast growth factor (bFGF) is a specific and potent angiogenic factor implicated in tumor growth. The biological activity of bFGF is mediated through interaction with its high-affinity receptor, fibroblast growth factor receptor-1 (FGFR-1). In this study, we selected Xenopus FGFR-1 as a model antigen by the breaking of immune tolerance to explore the feasibility of cancer therapy in murine tumor models. We show here that vaccination with Xenopus FGFR-1 (pxFR1) is effective at antitumor immunity in three murine models. FGFR-1-specific autoantibodies in sera of pxFR1-immunized mice could be found in Western blotting analysis. The purified immunoglobulins were effective at the inhibition of endothelial cell proliferation in vitro and at the antitumor activity in vivo. The antitumor activity and production of FGFR-1-specific autoantibodies could be abrogated by depletion of CD4+ T lymphocytes. Histological examination revealed that the autoantibody was deposited on the endothelial cells within tumor tissues from pxFR1-immunized mice, and intratumoral angiogenesis was significantly suppressed. Furthermore, the inhibition of angiogenesis could also be found in alginate-encapsulate tumor cell assay. These observations may provide a new vaccine strategy for cancer therapy through the induction of autoimmunity against FGFR-1 associated with angiogenesis in a cross-reaction.  相似文献   

6.
Keyes KA  Mann L  Teicher B  Alvarez E 《Cytokine》2003,21(2):98-104
Tumor microenvironment plays a critical role in tumor growth, angiogenesis, and metastasis. Differences in site of tumor implantation result in differences in tumor growth, metastasis, as well as response to chemotherapy. We hypothesized that tumor-induced angiogenic growth factor production into the plasma will also be influenced by site of tumor implantation. We evaluated the site-dependent production of angiogenic growth factors in the plasma of tumor bearing animals at two different sites of implantation. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were evaluated in nude mice bearing A2780, SKOV-3, or OVCAR-3 human ovarian tumors, as well as Panc-1, AsPC-1, or BxPC-3 human pancreatic tumors grown as subcutaneous (SC) xenografts or in the intraperitoneal (IP) cavity. Plasma VEGF and bFGF levels produced by two ovarian tumor lines and two pancreatic tumor lines were substantially higher when the tumors were implanted in the IP cavity than in the SC space. These studies indicated that the site of tumor implantation was an important determinant in the production of plasma VEGF and bFGF levels. As more and more anti-angiogenic agents are developed, the need for appropriate animal models becomes apparent. These results suggest the demand for an appropriate model for the in vivo evaluation of anti-angiogenesis.  相似文献   

7.
Solid tumors require neovascularization for their growth. Recent evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs) contribute to tumor angiogenesis. We show here that granulocyte colony-stimulating factor (G-CSF) markedly promotes growth of the colon cancer inoculated into the subcutaneous space of mice, whereas G-CSF had no effect on cancer cell proliferation in vitro. The accelerated tumor growth was associated with enhancement of neovascularization in the tumor. We found that bone marrow-derived cells participated in new blood vessel formation in tumor. Our findings suggest that G-CSF may have potential to promote tumor growth, at least in part, by stimulating angiogenesis in which bone marrow-derived EPCs play a role.  相似文献   

8.
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.  相似文献   

9.
This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous "take rate" in NOD-SCID mice, and increased production of PSA. Tumors expressing F134L and R273H grew slower than controls, and were associated with decreased necrosis and apoptosis, but not hypoxia. Interestingly, hypoxia levels were increased in tumors expressing M237L. There was less proliferation in F134L-bearing tumors compared to control, but this was not statistically significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation.  相似文献   

10.
Angiogenesis is important for normal growth and wound healing processes. An imbalance of the growth factors involved in this process, however, causes the acceleration of several diseases including malignant, ocular, and inflammatory diseases. Inhibiting angiogenesis through interfering with its pathway is a promising methodology to hinder the progression of these diseases. Herein, we studied the anti-angiogenic effects of various carbon materials such as graphite, multiwalled carbon nanotubes and fullerenes in vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2)-induced angiogenesis evaluated in the chick chorioallantoic membrane (CAM) model. All the carbon materials tested showed substantial anti-angiogenic activity against either FGF2- or VEGF-induced angiogenesis in the CAM model. Those carbon materials did not have any significant effects on basal angiogenesis in the absence of the added growth factors.  相似文献   

11.
Angiogenesis is crucial for the growth and metastasis of solid tumors with sizes larger than a few cubic millimeter Canstatin, the non-collagenous 1 (NC1) domain of alpha2 chain of type IV collagen, was previously shown to inhibit proliferation of endothelial cells in vitro and suppress in vivo tumor growth. Our previous studies showed that canstatin-N, the N-terminal 1-89 amino acid fragment of canstatin, inhibited the neovascularization in vivo, potently induced apoptosis of endothelial cells in vitro, and suppressed in vivo tumor growth in BALB/c mice. In the present study, we demonstrated that canstatin-C, the C-terminal 157-227 amino acid fragment of canstatin, also specifically inhibited in vitro the proliferation of human umbilical vein endothelial cells and induced apoptosis, but the apoptosis-inducing activity, while close to that of the full-length canstatin, was much lower than that of canstatin-N. Canstatin-C also suppressed in vivo tumor growth in BALB/c mice at a dosage of 10mg/kg/day. These results suggest that canstatin-C is an anti-angiogenic domain of canstatin mainly associated with the specific inhibition of proliferation of endothelial cells, whereas canstatin-N with the potential apoptosis-inducing activity on endothelial cells.  相似文献   

12.
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.  相似文献   

13.
Apolipoprotein(a) (apo(a)) contains tandemly repeated kringle domains that are closely related to plasminogen kringle 4, followed by a single kringle 5-like domain and an inactive protease-like domain. Recently, the anti-angiogenic activities of apo(a) have been demonstrated both in vitro and in vivo. However, its effects on tumor angiogenesis and the underlying mechanisms involved have not been fully elucidated. To evaluate the anti-angiogenic and anti-tumor activities of the apo(a) kringle domains and to elucidate their mechanism of action, we expressed the last three kringle domains of apo(a), KIV-9, KIV-10, and KV, in Escherichia coli. The resultant recombinant protein, termed rhLK68, exhibited a dose-dependent inhibition of basic fibroblast growth factor-stimulated human umbilical vein endothelial cell proliferation and migration in vitro and inhibited the neovascularization in chick chorioallantoic membranes in vivo. The ability of rhLK68 to abrogate the activation of extracellular signal-regulated kinases appears to be responsible for rhLK68-mediated anti-angiogenesis. Furthermore, systemic administration of rhLK68 suppressed human lung (A549) and colon (HCT-15) tumor growth in nude mice. Immunohistochemical examination and in situ hybridization analysis of the tumors showed a significant decrease in the number of blood vessels and the reduced expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin, indicating that suppression of angiogenesis may have played a significant role in the inhibition of tumor growth. Collectively, these results suggest that a truncated apo(a), rhLK68, is a potent anti-angiogenic and anti-tumor molecule.  相似文献   

14.
Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.  相似文献   

15.
Angiogenesis, the formation of new blood vessels, is required for physiological development of vertebrates and repair of damaged tissue, but in the pathological setting contributes to progression of cancer. During tumor growth, angiogenesis is supported by up-regulation of angiogenic stimulators (pro-angiogenic) and down-regulation of angiogenic inhibitors (anti-angiogenic). The switch to the angiogenic phenotype (angiogenic switch) allows the tumors to grow and facilitate metastasis. The bioactive NC1 domain of type IV collagen alpha3 chain, called tumstatin, imparts anti-tumor activity by inducing apoptosis of proliferating endothelial cells. Tumstatin binds to alphaVbeta3 integrin via a mechanism independent of the RGD-sequence recognition and inhibits cap-dependent protein synthesis in the proliferating endothelial cells. The physiological level of tumstatin is controlled by matrix metalloproteinase-9, which most effectively cleaves it from the basement membrane and its physiological concentration in the circulation keeps pathological angiogenesis and tumor growth in check. These findings suggest that tumstatin functions as an endogenous inhibitor of pathological angiogenesis and functions as a novel suppressor of proliferating endothelial cells and growth of tumors.  相似文献   

16.
Angiogenesis leads to tumor neovascularization by promoting tumor growth and metastatic spread, therefore, angiogenesis is considered as an attractive target for potential small molecule anticancer drug discovery. Herein, we report the structural modification and biological evaluation of baicalein derivatives, among which compound 42 had potent in vivo anti-angiogenic activity and wide security treatment window in transgenic zebrafish model. Further, 42 exhibited the most potent inhibitory activity on HUVEC proliferation, migration and tube formation in vitro. Moreover, 42 significantly inhibited growth of human lung cancer A549 cells and weak influence on human normal fibroblast L929 cells. The present research demonstrated that the significant anti-angiogenic and anticancer effects, which provided the supportive evidence for 42 could be used as a potential compound of cancer therapy.  相似文献   

17.
Mitogen-activated protein kinase kinase kinase 3 (MEKK3) plays an essential role in embryonic angiogenesis, but its role in tumor growth and angiogenesis is unknown. In this study, we further investigated the role of MEKK3 in embryonic angiogenesis, tumor angiogenesis, and angiogenic factor production. We found that endothelial cells from Mekk3-deficient embryos showed defects in cell proliferation, apoptosis, and interactions with myocardium in the heart. We also found that MEKK3 is required for angiopoietin-1 (Ang1)-induced p38 and ERK5 activation. To study the role of MEKK3 in tumor growth and angiogenesis, we established both wild-type and Mekk3-deficient tumor-like embryonic stem cell lines and transplanted them subcutaneously into nude mice to assess their ability to grow and induce tumor angiogenesis. Mekk3-deficient tumors developed and grew similarly as control Mekk3 wild-type tumors and were also capable of inducing tumor angiogenesis. In addition, we found no differences in the production of VEGF in Mekk3-deficient tumors or embryos. Taken together, our results suggest that MEKK3 plays a critical role in Ang1/Tie2 signaling to control endothelial cell proliferation and survival and is required for endothelial cells to interact with the myocardium during early embryonic development. However, MEKK3 is not essential for tumor growth and angiogenesis. cardiovascular; mitogen-activated protein kinase; embryonic development  相似文献   

18.
19.
Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp) derived from the receptor binding region of human apolipoprotein E (apoE) inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.  相似文献   

20.
Endostatin derived from collagen XVIII is a potent endogenous anti-angiogenic factor that induces regression of various tumors of epithelial origin. Endostatin has been shown to inhibit endothelial cell functions, however, its effect remains controversial. We first attempted here to apply the inhibitory effect of recombinant human endostatin on chondrosarcomas, which originate from the mesenchyme, in nude mice. Endostatin induced reduction of chondrosarcoma growth and tumor angiogenesis in vivo. However, endostatin showed no effect on the proliferation and migration of chondrosarcoma cells in vitro. Next, we investigated the interactions between endostatin and endothelial cells in detail. Endostatin inhibited the migration on and attachment to collagen I but did not affect the proliferation of endothelial cells. Although the migration of endothelial cells was stimulated by angiogenic factors such as basic fibroblast growth factor and vascular endothelial growth factor, endostatin showed similar inhibitory effects on it in the presence and absence of the stimulants. Moreover, the inhibitory effect against endothelial cell attachment to collagen I was attenuated or modulated in the presence of neutralizing antibodies of alpha(2), alpha(5)beta(1), and alpha(V)beta(3) integrins but not that of alpha(1) integrin. Our results suggest that endostatin might suppress the alpha(2)beta(1) integrin function of endothelial cells via alpha(5)beta(1) or alpha(V)beta(3) integrin. We propose here that endostatin might be effective for anti-angiogenic therapy for human chondrosarcomas through the suppression of alpha(2)beta(1) integrin functions in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号