共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jessica W. Wright 《Plant and Soil》2007,293(1-2):209-217
Local adaptation to serpentine soils is studied using both transplant experiments and molecular genetic techniques. In long-lived
species, such as pines, it is unclear how soon after germination local adaptation becomes detectable. Here I present results
of a 36-year reciprocal transplant experiment using Pinus ponderosa, along with allozyme analyses from the same trees. Using a repeated measures analysis of variance, there is evidence for
adaptation to serpentine soils; however, significant differences between source soil types do not become apparent until 20 years
after the start of the experiment. Analysis of allozyme data showed no evidence for differentiation between the serpentine
and non-serpentine populations. Comparing the performance of families over the course of the experiment found that there was
little correlation between performance after 1 or 4 years of growth in the field and performance after 36 years. This suggests
that short-term transplant experiments may not provide definitive evidence for adaptation to serpentine soils. A literature
survey of all transplant studies using pine species growing on and off of serpentine soils found that studies that lasted
fewer than 2 years showed no evidence for adaptation. However, in the two experiments (this one included) that lasted more
than 2 years, both showed evidence for adaptation to serpentine soils. More long-term experiments are required to validate
these results. 相似文献
3.
Techniques are presented to detect 23 isozyme loci in the long-lived perennial plant, ponderosa pine. Meiotically derived megagametophyte from seeds is used to examine directly the segregation of allelic variants. Approximately seven seeds were initially examined for 12 enzymes from each of 47 trees from ten stands throughout the northern Rocky Mountain region. Additional seeds were also examined from selected families to confirm the inheritance of observed electrophoretic variants at 13 polymorphic loci and to estimate linkage relationships. Significant nonrandom segregation was consistently detected for three pairs of loci: ADH-1: AAT-2, ADH-1: PGI-1, and LAP-2: 6PG-1. Preliminary estimates of population parameters reveal a relatively high average heterozygosity (H=0.123). This is partitioned into a high amount of genetic variation within local stands, with only approximately 12% of the total heterozygosity resulting from genic differences between stands.Funds for this study were made available under the McIntire-Stennis program of the Forest, Range, and Conservation Experiment Station of the School of Forestry, University of Montana. 相似文献
4.
D. R. Viglierchio 《Journal of nematology》1979,11(4):377-387
Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. 相似文献
5.
Techniques are presented to detect 23 isozyme loci in the long-lived perennial plant, ponderosa pine. Meiotically derived megagametophyte from seeds is used to examine directly the segregation of allelic variants. Approximately seven seeds were initially examined for 12 enzymes from each of 47 trees from ten stands throughout the northern Rocky Mountain region. Additional seeds were also examined from selected families to confirm the inheritance of observed electrophoretic variants at 13 polymorphic loci and to estimate linkage relationship. Significant norandom segregation was consistently detected for three pairs of loci: ADH-1:AAT-2, ADH-1:PGI-1, and LAP-2:6PG-1. Preliminary estimates of population parameters reveal a relatively high average heterozygosity (H = 0.123). This is partitioned into a high amont of genetic variation within local stands, with only approximately 12% of the total heterozygosity resulting from genic difference between stands. 相似文献
6.
Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation. 相似文献
7.
8.
9.
Management is an effective tool for increasing the productivity of Mongolian pine (Pinus sylvestris var. mongolica). This species has been widely planted in China, especially in sandy lands. However, optimization of management practices had not been fully explored. We established a system dynamic model to evaluate the effects of thinning and of manipulation of water supply on the productivity and population density of a Mongolian pine forest (17 scenarios in total). Different levels of thinning increased the mean biomass of Mongolian pine over no-management to a range from 202 to 256 t·ha-1. Increasing water supply decreased the mean biomass of Mongolian pine to a range from 176 to 199 t·ha-1. These results indicated that thinning at different levels may lead to an increase in biomass accumulation, while manipulating water supply may decrease biomass. Further, thinning appeared more effective than increasing water supply in efforts at maintaining high productivity of Mongolian pine forests. Moreover, the highest biomass occurred in a scenario with a thinning intensity of 30% in over-mature trees, indicating that this thinning intensity was the most effective choice for to the maintenance of the highest biomass in Mongolian pine forests. This study informs about the interactions between Mongolian pine and forest management, and provides guidelines for the practice of management of this forest type. 相似文献
10.
Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp collections in five genera (Anthracobia, Morchella, Peziza, Scutellinia, Tricharina) of post-fire Pezizales produced ten restriction fragment length polymorphism (RFLP) types. We found no root tips colonized by species of post-fire Pezizales fruiting at our site. However, 15% (6/39) of the RFLP types obtained from mycorrhizal roots within 32 soil cores were ascomycetes. Phylogenetic analyses of the 18S nuclear ribosomal DNA gene indicated that four of the six RFLP types clustered with two genera of the Pezizales, Wilcoxina and Geopora. Subsequent analyses indicated that two of these mycobionts were probably Wilcoxina rehmii, one Geopora cooperi, and one Geopora sp. The identities of two types were not successfully determined with PCR-based methods. Results contribute knowledge about the above- and below-ground ascomycete community in a ponderosa pine forest after a low intensity fire. 相似文献
11.
Effects of the time of drought occurrence within the growing season on growth and survival of Pinus ponderosa seedlings 总被引:1,自引:0,他引:1
María Elena Fernández Javier E. Gyenge Santiago Varela Mercedes de Urquiza 《Trees - Structure and Function》2014,28(3):745-756
Key message
A drought event during spring produces a stronger and long lasting decrease in growth of ponderosa pine seedlings than a summer drought event. However, survival is not differentially affected.Abstract
Although there is certainty about the increasing frequency of extreme climatic events, the consequences of changing patterns of drought events within the growing season on the growth and survival of different species are much less certain. In particular, little knowledge is available on the differential effect on tree seedlings of a drought event at different times within the growing season. The objective of this study was to quantify the effect of a drought event imposed at different times over the growing season on the growth, survival and some related morphological and physiological variables of Pinus ponderosa seedlings from two seed sources. Four treatments were applied: control conditions; spring drought; summer drought and spring plus summer drought (SpSuD). A drought event in spring reduced stem growth and biomass accumulation in ponderosa pine seedlings during the occurrence of the drought and afterwards, even when plant water status had recovered. The lack of growth recovery could not be associated with loss of stem hydraulic conductivity or reduction in stomatal conductance after drought. However, the spring drought did not differentially affect plant survival, as was the case with prolonged drought in the SpSuD treatment. The summer drought event had a significant but much smaller impact on plant growth. Our results suggest different consequences of a drought event in spring or in summer in ponderosa pine seedlings. This knowledge may be relevant to understand and predict tree seedlings responses to changing patterns of drought events within the growing season in the framework of climatic change. 相似文献12.
Following a single acute exposure to chlorine gas, persistenteffects on epicuticular waxes, cuticular transpiration, treegrowth and mortality were studied in foliage of Pinus ponderosaand Pseudotsuga menziesii for three growing seasons. Chlorinegas exposure caused foliar injury to both exposed foliage andfoliage that flushed after exposure (P < 0.05). The tendencyto form films of water rather than droplets was greater in directlyexposed foliage (P < 0.001). Rates of cuticular transpirationwere higher for directly and indirectly exposed foliage of Pinusponderosa up to 1 year after exposure and up to 6 months afterexposure for directly exposed Pseudotsuga menziesii(P < 0.001),after which P. menziesii needles defoliated. Total water content(TWC) and relative water content were significantly correlatedwith foliar injury (P < 0.05). TWC was lower for directlyexposed foliage up to 1 year after exposure (P < 0.001).There was no persistent negative effect on Fv/Fm ratios after1 year. Exposure to chlorine gas did not affect needle lengthor annual shoot increment growth, but exposure was correlatedwith increased bud production. Needle longevity of foliage thatflushed 2 months after exposure was reduced significantly (P< 0.001). Annual stem increment growth for both species decreasedover at least three growing seasons following chlorine gas exposure(P < 0.001), and depended on distance from the spill site.Cone production was lower for exposed Pinus ponderosa treescompared to controls (P < 0.05), and tree mortality was higherwithin approx. 50 m of the release site forPseudotsuga menziesii. Growth responses for both conifers agreed well with predictedpatterns of carbon allocation after defoliation caused by chlorinegas exposure. Copyright 2001 Annals of Botany Company Pinus ponderosa, Pseudotsuga menziesii, conifers, chlorine gas, leaf wettability, cuticular transpiration, water relations, growth, mortality 相似文献
13.
Background and Aims
Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production.Methods
Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables.Key Results
Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19·4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41·8 % of the variation.Conclusions
Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings'' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical trade-off with seedling growth appeared to be real, however slight. The climate variables provided little evidence for adaptive alkaloid variation, especially within regions.Key words: Pinus ponderosa var. ponderosa, Pinaceae, 2,6-disubstituted piperidine alkaloids, secondary products, geographic variation, progeny study, plant defense, Growth–Differentiation Balance Hypothesis, PRISM 相似文献14.
15.
Management practices over the past 100 years, especially fire exclusion and suppression, in Yosemite Valley, Yosemite National Park, CA resulted in forest stands with basal areas in excess of 110 m2 ha-1. Accelerated attack by several species of bark beetles (Scolytidae) followed a severe drought in 1976–77. Pinus ponderosa, already under attack by root rot (Heterobasidion annosus) was affected severely, and mortality exceeded 70%. Calocedrus decurrens did not suffer comparable mortality and has replaced P. ponderosa as the dominant species. Size class distributions as well as comparisons of relative density and relative basal area from 1961, 1976 and 1983–85 also demonstrate a major change in forest composition. This change is most pronounced on alluvial landforms. 相似文献
16.
The effects of elevated CO2 and N-fertilization on the architecture of Pinus ponderosa Dougl. ex P. Laws & C. Laws fine roots and their associated mycorrhizal symbionts were measured over a 4-year period using minirhizotron tubes. The study was conducted in open-top field-exposure chambers located near Placerville, Calif. A replicated (3 replicates), 3×3 factorial experimental design with three CO2 concentrations [ambient air (354 mol mol–1), 525 mol mol–1, and 700 mol mol–1] and three rates of N-fertilization (0, 100 and 200 kg ha–1 year–1) was used. Elevated CO2 and N treatment had contrasting effects on the architecture of fine roots and their associated mycorrhizae. Elevated CO2 increased both fine root extensity (degree of soil exploration) and intensity (extent that roots use explored areas) but had no effect on mycorrhizae. In contrast, N-fertilization had no effect on fine root extensity or intensity but increased mycorrhizal extensity and intensity. To better understand and model the responses of systems to increasing CO2 concentrations and N deposition/fertilization it is necessary to consider these contrasting root architectural responses. 相似文献
17.
Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities. 相似文献
18.
19.
Julia A. Sohn J. Renée Brooks Jürgen Bauhus Martin Kohler Thomas E. Kolb Nathan G. McDowell 《Trees - Structure and Function》2014,28(4):1035-1051
Key message
The muted wood isotopic signal in slow-growing trees of unthinned stands indicates lower responsiveness to changing environmental conditions compared to fast-growing trees in thinned stands.Abstract
To examine the physiological processes associated with higher growth rates after thinning, we analyzed the oxygen isotopic values in wood (δ18Ow) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with wood-based estimates of carbon isotope discrimination (?13C), basal area increment (BAI), and gas exchange. We found that (heavy) thinning led to shifts and increased inter-annual variability of both stable carbon and oxygen isotope ratios relative to the control throughout the first post-thinning decade. Results of a sensitivity analysis suggested that both an increase in stomatal conductance (g s) and differences in source water among treatments are equally probable causes of the δ18Ow shift in heavily thinned stands. We modeled inter-annual changes in δ18Ow of trees from all treatments using environmental and physiological data and found that the significant increase in δ18Ow inter-annual variance was related to greater δ18Ow responsiveness to changing environmental conditions for trees in thinned stands when compared to control stands. Based on model results, the more muted climatic response of wood isotopes in slow-growing control trees is likely to be the consequence of reduced carbon sink strength causing a higher degree of mixing of previously stored and fresh assimilates when compared to faster-growing trees in thinned stands. Alternatively, the muted response of δ18Ow to climatic variation of trees in the control stand may result from little variation in the control stand in physiological processes (photosynthesis, transpiration) that are known to affect δ18Ow. 相似文献20.
Rygiewicz Paul T. Johnson Mark G. Ganio Lisa M. Tingey David T. Storm Marjorie J. 《Plant and Soil》1997,189(2):275-287
Climate change (elevated atmospheric CO2, and altered air temperatures, precipitation amounts and seasonal patterns) may affect ecosystem processes by altering carbon allocation in plants, and carbon flux from plants to soil. Mycorrhizal fungi, as carbon sinks, are among the first soil biota to receive carbon from plants, and thereby influence carbon release from plants to soil. One step in this carbon release is via fine root and mycorrhizal turnover. It is necessary to know the lifetime and temporal occurrence of roots and mycorrhizae to determine the capacity of the soil ecosystem to sequester carbon assimilated aboveground. In this study, ponderosa pine (Pinus ponderosa Laws) seedlings were grown under three levels of atmospheric CO2 (ambient, 525 and 700 mol CO2 mol-1) and three levels of annual nitrogen additions (0,100 and 200 kg N ha-1) in open-top chambers. At a two-month frequency during 18 months, we observed ectomycorrhizal root tips observed using minirhizotron tubes and camera. The numbers of new mycorrhizal root tips, the numbers of tips that disappeared between two consecutive recording events, and the standing crop of tips at each event were determined. There were more mycorrhizal tips of all three types seen during the summer compared with other times of the year. When only the standing crop of mycorrhizal tips was considered, effects of the CO2 and N addition treatments on carbon allocation to mycorrhizal tips was weakly evident. However, when the three types of tips were considered collectively, tips numbers flux of carbon through mycorrhizae was greatest in the: (1) high CO2 treatment compared with the other CO2 treatments, and (2) intermediate N addition treatment compared with the other N addition treatments. A survival analysis on the entire 18 month cohort of tips was done to calculate the median lifetime of the mycorrhizal root tips. Average median lifetime of the mycorrhizal tips was 139 days and was not affected by nitrogen and CO2 treatments. 相似文献