首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract We examined the 7‐year effects of three restoration treatments on leaf physiology and insect‐resistance characteristics of pre‐settlement age ponderosa pines (Pinus ponderosa Dougl. ex Laws.) at the Gus Pearson Natural Area (GPNA) in northern Arizona. Restoration treatments were: (1) thinned in 1993 to approximate pre‐Euro‐American settlement stand structure, (2) thinned plus prescribed burned in 1994 and 1998, and (3) untreated control. Tree physiological and insect‐resistance characteristics were measured in year 2000, 7 years after thinning, using the same procedures as an earlier study performed in 1996. Consistent with the 1996 results, pre‐dawn water potential in 2000 was consistently lower in the control than both thinned treatments. Both thinned treatments continued to have increased foliar nitrogen concentration in leaves 7 years after treatment. However lower leaf nitrogen concentration in the thinned and burned compared with the thinned treatment suggests lower nitrogen availability to trees in repeatedly burned plots. Analysis of leaf gas exchange characteristics and carbon isotope content (δ13C) suggests continued stimulation of photosynthesis by both thinning treatments. Differences among treatments in resin volume, a measure of bark beetle resistance, depended on season of measurement. Trees in both thinning treatments continued to have increased leaf toughness, a measure of resistance to insect folivores. Our results show that many beneficial effects of restoration treatments on carbon, water, and nitrogen relations and insect‐resistance characteristics of pre‐settlement ponderosa pines continue to be expressed 7 years after treatment at the GPNA.  相似文献   

2.
Modeling Ecological Restoration Effects on Ponderosa Pine Forest Structure   总被引:3,自引:0,他引:3  
FIRESUM, an ecological process model incorporating surface fire disturbance, was modified for use in southwestern ponderosa pine ecosystems. The model was used to determine changes in forest structure over time and then applied to simulate changes in aboveground biomass and nitrogen storage since exclusion of the natural frequent fire regime in an unharvested Arizona forest. Dendroecological reconstruction of forest structure in 1876, prior to Euro‐American settlement, was used to initialize the model; projections were validated with forest measurements in 1992. Biomass allocations shifted from herbaceous plants to trees, and nitrogen was increasingly retained in living and dead tree biomass over the 116‐year period (1876–1992). Forest conditions in 1992 were substantially degraded compared to reference presettlement conditions: old‐growth trees were dying at accelerated rates, herbaceous production was reduced nearly 90%, and the entire stand was highly susceptible to high‐intensity wildfire. Following an experiment initiated in 1993 to test ecological restoration treatments, future changes were modeled for the next century. Future forest structure remained within the natural presettlement range of variability under the full restoration treatment, in which forest biomass structure was thinned to emulate presettlement conditions and repeated low‐intensity fire was reintroduced. Simulation of the control treatment indicated continuation of exceptionally high tree density, probably culminating in stand‐replacing ecosystem change through high‐intensity wildfire or tree mortality from pathogens. Intermediate results were observed in the partial restoration treatment (tree thinning only); the open forest structure and high herbaceous productivity found immediately after treatment were gradually degraded as dense tree cover reestablished in the absence of fire. Modeling results support comprehensive restorative management as a long‐term approach to conservation of key indigenous ecosystem characteristics.  相似文献   

3.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

4.
Restoration efforts to improve vigor of large, old trees and decrease risk to high‐intensity wildland fire and drought‐mediated insect mortality often include reductions in stand density. We examined 15‐year growth response of old ponderosa pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi) trees in northeastern California, U.S.A. to two levels of thinning treatments compared to an untreated (control) area. Density reductions involved radial thinning (thinning 9.1 m around individual trees) and stand thinning. Annual tree growth in the stand thinning increased immediately following treatment and was sustained over the 15 years. In contrast, radial thinning did not increase growth, but slowed decline compared to control trees. Available soil moisture was higher in the stand thinning than the control for 5 years post‐treatment and likely extended seasonal tree growth. Our results show that large, old trees can respond to restoration thinning treatments, but that the level of thinning impacts this response. Stand thinning must be sufficiently intensive to improve old tree growth and health, in part due to increasing available soil moisture. Importantly, focusing stand density reductions around the immediate neighborhood of legacy trees was insufficient to elicit a growth response, calling into question treatments attempting to increase vigor of legacy trees while still maintaining closed canopies in dry, coniferous forest types. Although radial thinning did not affect tree growth rates, this treatment may still achieve other resource objectives not studied here, such as protecting wildlife habitat, reducing the risk of severe fire injury, and decreasing susceptibility to bark beetle attacks.  相似文献   

5.
We evaluated landscape‐scale forest restoration treatment implementation and effectiveness in meeting objectives in a ponderosa pine forest at Mt. Trumbull, Arizona, U.S.A. The goal of the project was to alter forest structure by thinning and burning to more closely resemble forest conditions prior to Euro‐American settlement in 1870. We measured 117 permanent plots before (1996/1997) and after (2003) treatments. The plots were evenly distributed across the landscape (approximately 1,200 ha), about half of which was an untreated control. We evaluated treatment implementation and effectiveness based on 1870 structure and/or goals outlined by managers. The success of treatment implementation varied: about 94% of the area originally planned for restoration was treated in some manner by 2003, but only 70% received the full planned treatment (thin and burn). Although density of ponderosa pines >2.5 cm was reduced significantly by 66% from approximately 429 pines/ha to approximately 146 pines/ha in the treated area, the targeted residual density was exceeded by 111–256% (all plots) or 10–85% (thinned and burned plots). Thirteen percent of the pre‐settlement pines died in the treated area by 2003, but 9% percent also died in the control, indicating that pre‐settlement pines in untreated areas were nearly as vulnerable as those exposed to restoration treatments. Large snags increased 45%, and 65% of logs >50 cm were retained, achieving implementation goals. Although restoration treatments were not implemented totally to specifications, they were effective in attaining the overall project goal of restoring more open forest structure while preserving more than 75% of the pre‐settlement pines. Canopy fuel loads were substantially reduced, allowing for the reintroduction of surface fires.  相似文献   

6.
Forest structural reference conditions are widely used to understand how ecosystems have been altered and guide restoration and management objectives. We used six stem‐mapped permanent plots established in the early twentieth century to provide precise structural reference conditions for ponderosa pine forests of northern Arizona prior to Euro‐American settlement. Reference conditions for these plots in 1873–1874 included the following historical attributes: tree densities of 45–127 trees/ha, mean tree diameter at breast height (dbh) of 43.8 cm with a corresponding quadratic mean diameter range of 41.5–51.3 cm, and a stand basal area of 9.2–18.0 m2/ha. The reconstructed diameter distributions (for live ponderosa pine trees with dbh ≥9.14 cm) prior to fire exclusion varied in shape but generally displayed an irregular unimodal distribution. We suggest that management objectives for the structural restoration of ponderosa pine forests of northern Arizona emphasize: (1) conservation and retention of all pre‐settlement (>130 years) trees; (2) reduction of tree densities with a restoration objective ranging between 50 and 150 trees/ha having a large‐tree component between 25 and 50% of the total trees per hectare, respectively; (3) manipulation of the diameter distribution to achieve a unimodal or irregular, uneven‐aged shape (possibly targeting a balanced, uneven‐aged shape on cinder soil types) through the use of harvest and thinning practices that mimic gap disturbances (i.e., individual tree selection system); and (4) retention of 3–11 snags and logs per hectare resulting from natural mortality.  相似文献   

7.
Monitoring of ecological restoration treatments often focuses on changes in community structure and function. We suggest that long-term changes in community composition also need to be explicitly considered when evaluating the success of restoration treatments. In 1992, we initiated an experiment in a ponderosa pine-bunchgrass ecosystem to evaluate responses to restoration treatments: (a) thinning the overstory vegetation (‘thinning’), (b) thinning plus forest floor manipulation with periodic prescribed burning (‘composite’), and (c) untreated ‘control.’ Treatments were further stratified by forest patch type: presettlement tree clumps (trees that established prior to the onset of fire exclusion in 1876), patches of retained postsettlement trees, patches where all postsettlement trees were removed, and remnant grass openings. Species richness did not differ among treatments for 10 years, but was highest in the composite treatment in 11th and 12th year after initial treatment. Community composition diverged among treatments 5 years after initial treatment, and compositional changes were greatest in the composite treatment. Species richness and composition differed among patch types prior to treatment. Remnant grass patches were the most diverse and presettlement patches were the least diverse. Following treatment, species richness in the postsettlement removed and retained patches, gradually approached levels found in remnant grass patches. Compositional differences among patch types changed a little by 2005. Species richness at the 2 m2 scale increased only where the overstory was thinned and the understory was burned. However, these changes may not be detectable for many years, and can vary temporally in response to events such as severe droughts. Nonnative species establishment may be reduced by scheduling longer burn intervals or by refraining from burning where fuel loads are not hazardous, though these options may hinder goals of increasing diversity. Restoring species diversity and community composition continues to be more difficult than restoring ecosystem structure and function.  相似文献   

8.
Question: What was the role of fire in montane pine‐oak (Pinus‐Quercus) stands under changing human land uses on a temperate forest landscape in eastern North America? Location: Mill Mountain in the central Appalachian Mountains, Virginia, US. Methods: A dendroecological reconstruction of fire history was generated for four stands dominated by xerophytic pine and oak species. The fire chronology began under presettlement conditions following aboriginal depopulation. Subsequent land uses included European settlement, iron mining, logging, and US Forest Service acquisition and fire protection. Results: Fires occurred approximately every 5 years until 1930 without any evidence of a temporal trend in fire frequency. Burning ceased after 1930. Area‐wide fires affecting multiple pine stands were common, occurring at intervals of approximately 16 years. Most living pines became established during the late 1800s and early 1900s. Dead pines indicated that an older cohort established ca. 1730. Most hardwoods were established between the 1920s and 1940s. Conclusions: Except for fire protection, changes in land use had no discernible influence on fire frequency. Lightning ignitions and/or large fire extent may have been important for maintaining frequent burning in the 1700s, while fuel recovery may have constrained fire frequency during later periods. The disturbance regime appears to be characterized by frequent surface fires and occasional severe fires, insect outbreaks or other disturbances followed by pine recruitment episodes. Industrial disturbances appear to have had little influence on the pine stands. The greatest impact of industrial society is fire exclusion, which permitted hardwood establishment.  相似文献   

9.
10.
Replacement of grasslands by forests may result in increased water consumption, and the magnitude of this will depend on stand density. To test this hypotheses and evaluate the impact of pine plantations on hydric resources in Patagonia Argentina, we measured over two seasons (1999–2000 and 2000–2001) and at two densities of ponderosa pine plantations (350 and 500 trees ha?1) the following variables: soil water content, leaf water potential (ψ), individual tree growth, individual sap flow, and response of sap flow density (u) to vapor pressure deficit (VPD). Stand transpiration (T) and whole-plant liquid-phase hydraulic conductance (L) were also estimated. Pre-dawn ψ varied from about –0.5 to –1.0 MPa. No differences were found in midday maximum u (1100–1800 hours) on clear days between the 2 measurement years, throughout each season, or between different densities of plantation. Sapflow density was also not correlated with soil water storage up to 1.4 m soil depth. Sapflow increased until VPD of about 2.3 kPa, and decreased at VPD >4 kPa, describing a hysteresis in the afternoon. Values of L in Patagonian trees were similar to those recalculated from published data for pines of the same height in the USA. Average stand transpiration increased with increased density (2.07 and 3.08 mm day-1 for 350 and 500 pines ha-1, respectively) and size of the trees. We conclude that ponderosa pines in Patagonia Argentina use more water, in a magnitude depending on the density of the trees, than native grasslands. Accordingly, ponderosa pines use deep water to maintain high water potential and transpiration rates even during the dry season.  相似文献   

11.
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is currently the preferred method of slash removal because it allows land managers to burn large quantities of slash in a more controlled environment in comparison with broadcast burning slash. However burning slash piles is known to have adverse effects such as soil sterilization and exotic species establishment. This study investigated the effects of slash pile burning on soil biotic and chemical variables and early herbaceous succession on burned slash pile areas. Slash piles were created following tree thinning in two adjacent approximately 20‐ha ponderosa pine (Pinus ponderosa) restoration treatments in the Coconino National Forest near Flagstaff, Arizona. We selected 30 burned slash pile areas and sampled across a gradient of the burned piles for arbuscular mycorrhizal (AM) propagule densities, the soil seed bank, and soil chemical properties. In addition, we established five 1‐m2 plots in each burned pile to quantify the effect of living soil (AM inoculum) and seeding amendments on early herbaceous succession in burned slash pile areas. The five treatments consisted of a control (no treatment), living soil (AM inoculum) amendment, sterilized soil (no AM inoculum) amendment, seed amendment, and a seed/soil (AM inoculum) amendment. Slash pile burning nearly eliminated populations of viable seeds and AM propagules and altered soil chemical properties. Amending scars with native seeds increased the cover of native forbs and grasses. Furthermore adding both seed and living soil more than doubled total native plant cover and decreased ruderal and exotic plant cover. These results indicate that seed/soil amendments that increase native forbs and grasses may enhance the rate of succession in burned slash pile areas by allowing these species to outcompete exotic and ruderal species also establishing at the site through natural regeneration.  相似文献   

12.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

13.
Little is known about the vertical distribution of water uptake by trees under different water supply regimes, the subject of this study, conducted in a Scots pine stand on sandy loam in northern Sweden. The objective was to determine the water uptake distribution in pines under two different water regimes, desiccation (no precipitation) and irrigation (2?mm day?1 in July and 1?mm day?1 in August), and to relate the uptake to water content, root and soil texture distributions. The natural 18O gradient in soil water was exploited, in combination with two added tracers, 2H at 10?cm and 3H at 20?cm depth. Extraction of xylem sap and water from the soil profile then enabled evaluation of relative water uptake from four different soil depths (humus layer, 0–10, 10–25 and 25–55?cm) in each of two 50-m2 plots per treatment. In addition, water content, root biomass and soil texture were determined. There were differences in vertical water uptake distribution between treatments. In July, the pines at the irrigated and desiccated plots took up 50% and 30%, respectively, of their water from the upper layers, down to 25?cm depth. In August, the pines on the irrigated plots took up a greater proportion of their water from layers below 25?cm deep than they did in July. In a linear regression, the mean hydraulic conductivity for each mineral soil horizon explained a large part of the variation in relative water uptake. No systematic variation in the residual water uptake correlated to the root distribution. It was therefore concluded that the distribution of water uptake by the pines at Åheden was not a function of root density in the mineral soil, but was largely determined by the unsaturated hydraulic conductivity.  相似文献   

14.
To accelerate development of old forest features in coast redwood, two thinning treatments and an unthinned control were compared in three treatment areas in north coastal California. One thinning treatment was designed to restore old forest densities of 125 trees/ha and the other 250 trees/ha representing a one‐step and partial treatments to the desired stand density. Four years after treatment, numbers of trees had increased in the thinning treatments due to recruitment of new trees, but had decreased in the control due to self‐thinning. Residual trees increased in stem volume following thinning by 128% in low‐density thinning compared to 70% in the controls indicating thinning accelerated stand development. The thinning treatments also moved the species composition of these stands to a greater proportion of redwood. Considerable slash was produced by the thinning treatments but was decomposing rapidly. Black bears damaged approximately 15% of all trees and more than 38% of residual trees in the thinned treatments compared to less than 2% of all trees in the control. This damage included killing some trees and damaging other trees that survived. Decisions over restoration densities in these stands are complicated by prolonged stand development, and balancing risks and costs. In this case, the bears represent a stochastic factor that dramatically increases risk. Thinning appears to be an effective means of enhancing old forest development by accelerating tree growth, modifying species composition, and increasing stand‐level variability. Continued monitoring will be necessary to evaluate long‐term trends in density relative to effects of bear damage.  相似文献   

15.
Two methods for evaluation of pine stand vigor were tested on permanent sample plots near Krasnoyarsk City: visual evaluation and exposure to fungal metabolites. In the first case, forest vigor was estimated using the six-point system of the Sanitary Regulations of the Russian Federation as the mean score for 200 trees on the sample plots. In the second case, the vigor was evaluated from the size of the necrotic spot on inner bark of the tree after inoculation of 22–25 randomly chosen pines with the extract of fungus Ceratocystis laricicola Redfern and Minter. The necrotic spot size was significantly larger in pines from polluted forest as compared to background one. This points to the decrease in infection protection of trees affected by pollution, although visual evaluation of the stand vigor could not distinguish the polluted and background stands.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 506–512.Original Russian Text Copyright © 2005 by Polyakov, Polyakova, Pashenova, Stasova.  相似文献   

16.
Bauerle TL  Centinari M  Bauerle WL 《Planta》2011,234(5):1045-1054
We investigated responses of plant growth rate, hydraulic resistance, and xylem cavitation in scion-rootstock-combinations of Malus domestica L. cv. Honeycrisp scions grafted onto a high-shoot vigor (HSV) rootstock, (semi-dwarfing Malling111), or onto a low-shoot vigor (LSV) rootstock, (dwarfing Budagovsky 9), in response to substrate moisture limitation. Adjustments in xylem vessel diameter and frequency were related to hydraulic resistance measurements for high- versus low- vigor apple trees. We observed a greater tolerance to water deficit in the high-shoot compared to the low-shoot vigor plants under water deficit as evidenced by increased growth in several plant organs, and greater scion anatomical response to limited water availability with ca. 25% increased vessel frequency and ca. 28% narrower current season xylem ring width. Whereas water limitation resulted in greater graft union hydraulic resistance of high-shoot vigor trees, the opposite was true when water was not limiting. The graft union of the low-shoot vigor rootstock exhibited higher hydraulic resistance under well-watered conditions. Scions of high-shoot vigor rootstocks had fewer embolisms at low plant water status compared to scions of low-shoot vigor rootstocks, presumably as a result of large differences in xylem vessel diameter. Our results demonstrated that anatomical differences were related to shifts in hydraulic conductivity and cavitation events, a direct result of grafting, under limited soil water.  相似文献   

17.
We evaluated silvicultural thinning of pine plantations in order to determine the extent to which plantations treated in this way showed a greater structural similarity to natural stands. Specifically, we tested for differences in community structure (increase of DBH, increase of height and canopy height) and regeneration (seedlings and saplings <1, 1–2 and >2 years old) in response to thinning treatments (20% and 50% removal of density). We compared the variables of the thinned plots with those of the control plots (no thinning of living trees). Comparison of the structural variables between any treatments is of limited value due to the high intra- and inter-plot environmental variability (both slope and orientation affect tree growth to a significant degree). We therefore used ordination methods (Redundancy Analysis, RDA) to monitor covariation and to select non-redundant explanatory variables. We tested for differences between control and managed plots using Monte Carlo tests for the eigenvalues of the obtained axis of the RDA. Of the two treatments, only the 50% thinning treatment was significantly different from the control plots (in which only dead pines were thinned). In ten years, the basal area of pines showed a 10% increase in 50% thinned plots in comparison with the control plots. The number of saplings >2 years old was also significantly higher in 50% thinned plots. The control plots typically had an appreciably higher density of dead trees and a greater number of seedlings. Fifty percent thinning is having a positive effect on the naturalization of the stand but subsequent management will be needed to ensure establishment of advance regeneration.  相似文献   

18.
Park  Andrew 《Plant Ecology》2003,169(1):1-20
Surface fire can modify spatial patterns and self-thinning in pine-oak ecosystems. Spatial pattern analyses were used to compare pattern development and interspecific spatial interactions in trees and seedlings in five Madrean pine-oak stands with different recent fire histories. Interspecific and intraspecific patterns were compared in small (< 15 cm dbh) and large (< 15 cm dbh) diameter classes of the pines (Pinus durangensis, P. teocote, and P. leiophylla) and oaks (Quercus sideroxylla, Q. crassifolia, and Q. laeta) that collectively dominated the five stands. Numbers of juvenile trees in 2.5 × 2.5 m subplots were correlated with cumulative distances to adult trees. Small pine and oak trees were intraspecifically clustered at all scales, irrespective of fire regime. Large pines were strongly clustered only in stands with longer fire-free intervals, and patterns of large versus small pine trees were regular or random in frequent fire stands. These patterns were consistent with fire-induced mortality of maturing trees under frequent fire. Large and small pines were segregated from small oaks at short and long distances in one stand with a 32-year fire-free interval, implying that two or more dynamic factors had produced regular patterns at different scales. Such regular spatial patterns at short distances were not seen in other stands. Therefore, there was little evidence for direct competition between oaks and pines. The results reported here are consistent with studies from other pine-oak ecosystems showing that different fire regime and site factors interact to influence stand development processes and relative dominance of pines and oaks. In some stands, the continued absence of fire could foster increasing tree densities and an intensification of local neighborhood effects, producing segregation of pine and oak species at longer distances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Vegetation processes in terrestrial ecosystems are closely linked with wildfire regime, but fire histories at the boundary between the Great Basin and Mojave Deserts of North America are relatively sparse. We investigated wildfire regime and its driving factors before and after Euro-American settlement in high-elevation mixed-conifer ecosystems that are found as “mountain islands” in south-eastern Nevada, USA. Field-based results obtained at the Clover Mountains were compared with those already published for Mt. Irish, less than 100 km away, and also to remotely sensed information provided by the LANDFIRE project, which is commonly used for natural resource management. Annually resolved wildfire history at the Clover Mountains was derived back to year 1500 from fire scar samples taken from 139 ponderosa pines (Pinus ponderosa) located in six stands. During the 1785–2007 period, when at least 20 recorder trees (and a total of 241 fire scars) were available, the Clover Mountains were characterized by frequent (mean fire interval <10 years) low-severity fires, half of which scarred more than 10 % of recorder trees. The 1877 and 1946 fires scarred 50 % or more of recorder trees and spread to four out of six sampled stands. After the 1946 event, the site has experienced a 61-year fire-free period tied to fire suppression activity starting in the mid-1900s. In comparison with Mt. Irish, the Clover Mountains showed a longer mean fire return interval, larger fires, and some patchy high-severity events, even before Euro-American settlement. Variations in ecosystem composition and associated fire regime in these high-elevation mixed-conifer woodlands were not adequately captured by remotely sensed data used for vegetation management, revealing a need for additional field-based assessments of fire regime characteristics in this region.  相似文献   

20.
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest that has become established in North America. Discovered in Ohio in 1992, it has since been found in at least 13 states and parts of Canada. The beetle can cause significant growth loss in pines, and it represents a potential threat to trees in areas where it has not yet become established. To evaluate this threat to native pines, field and laboratory tests were conducted on several common and important southern and western species to determine whether they are acceptable hosts for T. piniperda. Comparisons with Pinus sylvestris L., Scots pine, a preferred natural host for the beetle, were made where possible. Measurements of beetle attack success on southern pine billets showed that Pinus taeda L., Pinus echinata Miller, Pinus elliottii var. elliottii Engelmann, Pinus palustris Miller, and Pinus virginiana Miller (loblolly, shortleaf, slash, longleaf, and Virginia pine, respectively) and two western pines, Pinus ponderosa Lawson and Pinus contorta Douglas (ponderosa and lodgepole pine, respectively), were acceptable for breeding material, but brood production was highly variable. Among the southern pines, P. taeda and P. echinata were susceptible to shoot feeding by T. piniperda, whereas P. elliottii was highly resistant and P. palustris seemed to be virtually immune. Shoot feeding tests on the western pines were conducted only in the laboratory, but there was moderate-to-good survival of adults feeding on both species. It seems that if T. piniperda is introduced into the south and west it will likely establish and may cause some damage to native pines. P. taeda may be affected more than other southern pines because it is the most abundant species, it is readily attacked for brood production, which can result in moderately large broods, and the beetle survives well during maturation feeding on P. taeda shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号