首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To better define Abd-B type homeodomain function, to test models that predict functional equivalence of all Hox genes and to initiate a search for the downstream targets of Hoxa13, we have performed a homeobox swap by replacing the homeobox of the Hoxa11 gene with that of the Hoxa13 gene. The Hoxa11 and Hoxa13 genes are contiguous Abd-B type genes located at the 5' end of the HoxA cluster. The modified Hoxa11 allele (A11(13hd)) showed near wild-type function in the development of the kidneys, axial skeleton and male reproductive tract, consistent with functional equivalence models. In the limbs and female reproductive tract, however, the A11(13hd) allele appeared to assume dominant Hoxa13 function. The uterus, in particular, showed a striking homeotic transformation towards cervix/vagina, where Hoxa13 is normally expressed. Gene chips were used to create a molecular portrait of this tissue conversion and revealed over 100 diagnostic gene expression changes. This work identifies candidate downstream targets of the Hoxa13 gene and demonstrates that even contiguous Abd-B homeoboxes have functional specificity.  相似文献   

2.
3.
4.
Hox gene functions are intimately linked to correct developmental expression of the genes. The identification of cis-acting regulatory sequences and their associated trans-acting factors constitutes a key step in deciphering the mechanisms underlying the correct positioning of the functional domain of Hox genes along the anterior-posterior axis. We have identified DNA elements driving Hoxa5 regionalized expression in mice, using the 2.1-kb mesodermal enhancer (MES) localized in Hoxa5 3' flanking sequences as a starting point. The MES sequence comprises regulatory elements targeting Hoxa5 expression in the limbs, the urogenital and gastrointestinal tracts, and the cervical-upper thoracic region of the prevertebral column. A 164-bp DNA fragment within the MES caudally restricts Hoxa5 expression at the level of prevertebra 10, corresponding to the posterior limit of its functional domain. Cdx proteins directly bind to this element in vitro via two conserved sites. Preventing Cdx binding by mutating the sites causes caudal expansion of the transgene expression domain. Of all three murine Cdx proteins that bind this element in vitro, Cdx4 has emerged as a potential regional posterior repressor of Hoxa5 expression. The restrictive control provided by Cdx interactions with Hoxa5 regulatory sequences may be one of the critical events in cervicothoracic axial specification.  相似文献   

5.
Little is known about the spatiotemporal requirement of Hox gene patterning activity in vertebrates. In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures. Here, we show that Hoxa2 is selectively required in cranial neural crest cells (NCCs). Moreover, we used a Cre-ERT2 recombinase system to induce a temporally controlled Hoxa2 deletion in the mouse. Hoxa2 inactivation after cranial NCC migration into branchial arches resulted in homeotic transformation of hyoid into mandibular arch skeletal derivatives, reproducing the conventional Hoxa2 knockout phenotype, and induced rapid changes in Alx4, Bapx1, Six2 and Msx1 expression patterns. Thus, hyoid NCCs retain a remarkable degree of plasticity even after their migration in the arch, and require Hoxa2 as an integral component of their morphogenetic program. Moreover, subpopulations of postmigratory NCCs required Hoxa2 at discrete time points to pattern distinct derivatives. This study provides the first temporal inactivation of a vertebrate Hox gene and illustrates Hox requirement during late morphogenetic processes.  相似文献   

6.
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.  相似文献   

7.
Hox genes control morphogenesis along the antero-posterior axis. The skeleton of vertebrates offers an exemplar readout of their activity: Hox genes control the morphology of the skeleton by defining type of vertebrae, and structure of the limbs. The head skeleton of vertebrates is formed by cranial neural crest (CNC), and mainly by a Hox-free domain of the CNC. Ectopic expression of anterior Hox genes in the CNC prevents the formation of the facial skeleton. These inhibitory effects on skeletogenesis are at odds with the recognized function of Hox genes in patterning the developing skeleton. To clarify these controversial effects, we overexpressed Hoxa2 across the entire developing endochondral skeleton in mouse. This gave rise to strong and spatially restricted effects: the most noticeable abnormalities were detected in the cranial base and consisted in a failure of bones to form or in a transformed morphology of bones. The rest of the skeleton exhibited milder defects, which never consisted in the absence or the transformation of any skeletal components. Analyses at early stages of endochondral bone development showed disorganized cell condensations in the cranial base of Col2a1-Hoxa2 transgenic embryos. We show that the distribution of Hoxa2-positive cells in Col2a1-Hoxa2 embryos does not match the wild-type developing cartilages. The Hoxa2-positive cells detected in atypical, non-chondrogenic location in the cranial base, remain as chondrocytes and lay down cartilage, indicating that Hoxa2 does not alter the fate of chondrocytes, but interferes with their spatial distribution. We propose that the ability of Hoxa2 to change the spatial distribution of cells accounts for the different phenotypes observed in Col2a1-Hoxa2 embryos; it also provides an explanation for the apparent inconsistency between the inhibitory effects of Hoxa2 on skeletal development, and the ability of Hox genes to establish the morphology of the vertebrate skeleton.  相似文献   

8.
Vertebrate Hox genes act as developmental architects by patterning embryonic structures like axial skeletal elements, limbs, brainstem territories, or neural crest derivatives. While active during the patterning steps of development, these genes turn out to be down-regulated in specific differentiation programs like that leading to chondrogenesis. To investigate why chondrocyte differentiation is correlated to the silencing of a Hox gene, we generated transgenic mice allowing Cre-mediated conditional misexpression of Hoxa2 and induced this gene in Collagen 2 alpha 1-expressing cells committed to enter chondrogenesis. Persistent Hoxa2 expression in chondrogenic cells resulted in overall chondrodysplasia with delayed cartilage hypertrophy, mineralization, and ossification but without proliferation defects. The absence of skeletal patterning anomaly and the regular migration of precursor cells indicated that the condensation step of chondrogenesis was normal. In contrast, closer examination at the differentiation step showed severely impaired chondrocyte differentiation. In addition, this inhibition affected structures independently of their embryonic origin. In conclusion, for the first time here, by a cell-type specific misexpression, we precisely uncoupled the patterning function of Hoxa2 from its involvement in regulating differentiation programs per se and demonstrate that Hoxa2 displays an anti-chondrogenic activity that is distinct from its patterning function.  相似文献   

9.
10.
The rhombencephalic neural crest play several roles in craniofacial development. They give rise to the cranial sensory ganglia and much of the craniofacial skeleton, and are vital for patterning of the craniofacial muscles. The loss of Hoxa1 or Hoxa2 function affects the development of multiple neural crest-derived structures. To understand how these two genes function together in craniofacial development, an allele was generated that disrupts both of these linked genes. Some of the craniofacial defects observed in the double mutants were additive combinations of those that exist in each of the single mutants, indicating that each gene functions independently in the formation of these structures. Other defects were found only in the double mutants demonstrating overlapping or synergistic functions. We also uncovered multiple defects in the attachments and trajectories of the extrinsic tongue and hyoid muscles in Hoxa2 mutants. Interestingly, the abnormal trajectory of two of these muscles, the styloglossus and the stylohyoideus, blocked the attachment of the hyoglossus to the greater horn of the hyoid, which in turn correlated exactly with the presence of cleft palate in Hoxa2 mutants. We suggest that the hyoglossus, whose function is to depress the lateral edges of the tongue, when unable to make its proper attachment to the greater horn of the hyoid, forces the tongue to adopt an abnormal posture which blocks closure of the palatal shelves. Unexpectedly, in Hoxa1/Hoxa2 double mutants, the penetrance of cleft palate is dramatically reduced. We show that two compensatory defects, associated with the loss of Hoxa1 function, restore normal attachment of the hyoglossus to the greater horn thereby allowing the palatal shelves to lift and fuse above the flattened tongue.  相似文献   

11.
12.
13.
14.
The Hox gene family is well known for its functions in establishing morphological diversity along the anterior-posterior axis of developing embryos. In mammals, one of these genes, Hoxa13, is crucial for embryonic survival, as its function is required for the proper expansion of the fetal vasculature in the placenta. Thus, it appears that the developmental strategy specific to placental mammals is linked, at least in part, to the recruitment of Hoxa13 function in developing extra-embryonic tissues. Yet, the mechanism underlying this extra-embryonic recruitment is unknown. Here, we provide evidence that this functional novelty is not exclusive to Hoxa13 but is shared with its neighboring Hoxa11 and Hoxa10 genes. We show that the extra-embryonic function of these three Hoxa genes stems from their specific expression in the allantois, an extra-embryonic hallmark of amniote vertebrates. Interestingly, Hoxa10-13 expression in the allantois is conserved in chick embryos, which are non-placental amniotes, suggesting that the extra-embryonic recruitment of Hoxa10, Hoxa11 and Hoxa13 most likely arose in amniotes, i.e. prior to the emergence of placental mammals. Finally, using a series of targeted recombination and transgenic assays, we provide evidence that the regulatory mechanism underlying Hoxa expression in the allantois is extremely complex and relies on several cis-regulatory sequences.  相似文献   

15.
The Hox11 paralogous genes play critical roles in kidney development. They are expressed in the early metanephric mesenchyme and are required for the induction of ureteric bud formation and its subsequent branching morphogenesis. They are also required for the normal nephrogenesis response of the metanephric mesenchyme to inductive signals from the ureteric bud. In this report, we use microarrays to perform a comprehensive gene expression analysis of the Hoxa11/Hoxd11 mutant kidney phenotype. We examined E11.5, E12.5, E13.5 and E16.5 developmental time points. A novel high throughput strategy for validation of microarray data is described, using additional biological replicates and an independent microarray platform. The results identified 13 genes with greater than 3-fold change in expression in early mutant kidneys, including Hoxa11s, GATA6, TGFbeta2, chemokine ligand 12, angiotensin receptor like 1, cytochrome P450, cadherin5, and Lymphocyte antigen 6 complex, Iroquois 3, EST A930038C07Rik, Meox2, Prkcn, and Slc40a1. Of interest, many of these genes, and others showing lower fold expression changes, have been connected to processes that make sense in terms of the mutant phenotype, including TGFbeta signaling, iron transport, protein kinase C function, growth arrest and GDNF regulation. These results identify the multiple molecular pathways downstream of Hox11 function in the developing kidney.  相似文献   

16.
During development of the vertebrate hindbrain, Hox genes play multiple roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.  相似文献   

17.
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.  相似文献   

18.
19.
20.
Hoxa11 and Hoxd11 are functionally redundant during kidney development. Mice with homozygous null mutation of either gene have normal kidneys, but double mutants have rudimentary, or in extreme cases, absent kidneys. We have examined the mechanism for renal growth failure in this mouse model and find defects in ureteric bud branching morphogenesis. The ureteric buds are either unbranched or have an atypical pattern characterized by lack of terminal branches in the midventral renal cortex. The mutant embryos show that Hoxa11 and Hoxd11 control development of a dorsoventral renal axis. By immunohistochemical analysis, Hoxa11 expression is restricted to the early metanephric mesenchyme, which induces ureteric bud formation and branching. It is not found in the ureteric bud. This suggests that the branching defect had been caused by failure of mesenchyme to epithelium signaling. In situ hybridizations with Wnt7b, a marker of the metanephric kidney, show that the branching defect was not simply the result of homeotic transformation of metanephros to mesonephros. Absent Bf2 and Gdnf expression in the midventral mesenchyme, findings that could by themselves account for branching defects, shows that Hoxa11 and Hoxd11 are necessary for normal gene expression in the ventral mesenchyme. Attenuation of normal gene expression along with the absence of a detectable proliferative or apoptotic change in the mutants show that one function of Hoxa11 and Hoxd11 in the developing renal mesenchyme is to regulate differentiation necessary for mesenchymal-epithelial reciprocal inductive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号