首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satya Prakash 《Genetics》1968,60(3):589-600
  相似文献   

2.
3.
Inversion Polymorphism and Embryonic Lethality in DROSOPHILA ROBUSTA   总被引:1,自引:1,他引:0  
Linda Riles 《Genetics》1965,52(6):1335-1343
  相似文献   

4.
The nature of fitness interactions is an important, yet unsolved, question in population genetics. We compare the egg-to-adult viability of individuals homozygous for either a second or a third chromosome with the viability of individuals homozygous for both chromosomes simultaneously. On the average, the viability of the two-chromosome homozygotes is somewhat greater than expected assuming that the fitnesses of the single-chromosome homozygotes interact in a multiplicative fashion. This result differs from previous observations that indicate either no significant deviations from the expectation or lower-than-expected average fitnesses for the double homozygotes.  相似文献   

5.
Satya Prakash 《Genetics》1967,57(3):655-663
  相似文献   

6.
In a large experiment, using nearly 200 population cages, we have measured the fitness of Drosophila melanogaster homozygous (1) for the second chromosome, (2) for the third chromosome, and (3) for both chromosomes. Twentyfour second chromosomes and 24 third chromosomes sampled from a natural population were tested. The mean fitness of the homozygous flies is 0.081 ± 0.014 for the second chromosome, 0.080 ± 0.017 for the third chromosome, and 0.079 ± 0.024 for both chromosomes simultaneously. Assuming that fitnesses are multiplicative (the additive fitness model makes no sense in the present case because of the large selection coefficients involved), the expected mean fitness of the homozygotes for both chromosomes is 0.0066; their observed fitness is more than ten times greater. Thus, it appears that synergistic interactions between loci are considerable; and that, consequently, the fitness function substantially departs from linearity. Two models are tentatively suggested for the fitness function: a "threshold" model and a "synergistic" model.—The experiments reported here confirm previous results showing that the concealed genetic load present in natural populations of Drosophila is sufficient to account for the selective maintenance of numerous polymorphisms (of the order of 1000).  相似文献   

7.
8.
Satya Prakash 《Genetics》1973,75(2):347-369
The central and marginal populations of D. robusta differ greatly in the level of inversion polymorphism; the marginal populations are monomorphic or nearly so and the central populations are highly polymorphic. This paper presents the frequencies of alleles at forty gene loci in various populations of D. robusta, studied by electrophoresis of proteins and enzymes. Population samples were obtained from eight widely separated populations of D. robusta which included the central, the extreme marginal and the intervening populations between the center and the margins. We find that the proportion of polymorphic loci and average heterozygosity per individual is slightly higher in the marginal populations than the central populations. In D. robusta on an average, 39% of the loci are polymorphic and the average proportion of loci heterozygous per individual is 11%. A breakdown of loci in three categories, viz, hydrolytic enzymes and some other enzymes, larval proteins and glycolytic and Kreb's cycle enzymes, shows that in all populations the level of polymorphism is highest in the hydrolytic enzymes, intermediate in larval proteins and least in the glycolytic and Kreb's cycle enzymes. On the average, the proportion of loci heterozygous per individual for three groups of loci is: hydrolytic enzymes and others (.164), larval proteins (.115) and glycolytic and Kreb's cycle enzymes (.037). We also observe that in all populations the level of polymorphism on the X chromosome is far less than the expected 38%; in salivary gland cells the euchromatic length of the X chromosome is 38% of the entire genome. Lower levels of polymorphism for the X chromosome loci are explained due to low probability of balanced polymorphisms for the X-linked loci since the conditions for establishment of balanced polymorphism for X-linked loci are more restrictive than for the autosomal loci.-The polymorphic loci can be grouped according to pattern of allele frequencies in different populations as follows: (1) The allele frequencies are similar in all populations at the XDH, Pep-1 and Hex-1 loci. (2) The alleles at the Est-1, Est-2, Amy loci and the AP-4(1.0) and the LAP-1(.90) alleles show north south clinal change in frequency. (3) There is north south and east west differentiation at the Pt-5, Pt-8 and Pt-9 loci and the allele AP-4(.81). (4) Polymorphism at loci such as Fum, B.Ox, Hex-8, Pep-2 and Pep-3 are restricted to only one or two of the populations. (5) Allele frequencies at the MDH and ODH loci fluctuate between populations. (6) Allele frequencies at many polymorphic loci such as Est-1, Est-2, LAP-1, AP-4, Pt-5, Pt-8, Pt-9, Pt-16, MDH, Fum change clinally within a gene arrangement. The pattern of gene variation in D. robusta is very complex and cannot be easily explained due to migration of neutral alleles between once-isolated populations or to semi-isolation of neutral alleles. The observations of the pattern of allele variation in different populations, high levels of polymorphism in the marginal populations which have small population size and low levels of polymorphism of the X chromosome loci all support the argument in favor of balancing selection as the main mechanism for the maintenance of these polymorphisms. Environmental factors must play a role in the maintenance of a great deal of these polymorphisms, since we observe clinal allele frequency changes even within a given inversion type.  相似文献   

9.
Evidence of strong associations of Est-1 alleles with the 2L, 2L1 and 2L3 gene arrangements of the left arm of the second chromosome in D. robusta is presented. Each gene arrangement is polymorphic for three to four Est-1 alleles. The allele frequencies differ in the 2L3 and 2L arrangements; the allele Est-1.92 is 8% in the 2L3 arrangement (n=203)—this allele is 82% in the 2L arrangement (n=203); the allele Est-11.0 is 66% and 14.8% in the 2L3 and 2L arrangements, respectively. There are no differences in allele frequencies in 2L3 arrangements from any of the widely separated seven different populations; similarly the allele frequencies in the 2L arrangement are alike in all five widely separated populations studied. The allele frequencies in the 2L1 arrangement are intermediate to those observed in the 2L3 and the 2L arrangements and show north-south clinal change. These associations between Est-1 alleles and gene arrangements of the left arm of the second chromosome are due to natural selection favoring different allele frequencies in different gene arrangements, as a result of epistatic interactions between the Est-1 locus and the loci on the gene arrangements. As expected, we observe that the proportion of heterozygotes is greater in the inversion heterokaryotypes than in the homokaryotypes.  相似文献   

10.
Yamuna Narayanan 《Genetics》1973,73(2):319-350
The phylogenetic relationships among the species of the D. robusta group were investigated by the analysis of chromosomal differences. Six of the ten known members of the D. robusta group were available for the study: D. colorata and D. robusta from the United States, and D. sordidula, D. pseudosordidula, D. lacertosa, and D. moriwakii from Japan. Analysis of the metaphase chromosomes from larval ganglion cells suggests that D. moriwakii and D. colorata, with rod-shaped X-chromosomes, are the more ancestral species, while D. sordidula, D. pseudosordidula, D. robusta, and D. lacertosa, with V-shaped X-chromosomes, are derived. The ancestral position of D. colorata and D. moriwakii is further strengthened by the fact that these are the two species in the D. robusta group that are cytologically closest to D. nigromelanica of the related D. melanica group. Of the four derived species, D. sordidula was found to be the closest to the ancestral species. The phylogeny based on the analysis of the gene sequences in the homologous chromosomes agreed with that indicated by the metaphase chromosomes. Since all attempts to obtain hybrids were unsuccessful except for the cross involving D. moriwakii females and D. colorata males, photographic maps of the salivary chromosomes were used to determine homology between the chromosomes of the different species. Evidence is presented to indicate that the D. robusta group originated in Asia (Japan), and that there were two migrations to the New World, the first leading to D. robusta, and the second to D. colorata. It is suggested that the route of migrations was across the Bering Land Bridge, and further, that the migrations occurred during the period from late Oligocene to middle Miocene, 20-25 million years ago.  相似文献   

11.
12.
Associations of Malic dehydrogenase alleles with the third chromosome arrangement 3R and the pericentric arrangement 3L-R are described. Even though significant associations between alleles and inversions exist within a population, there is an overall similarity in MDH allele frequencies in different populations inspite of large differences in inversion frequencies.  相似文献   

13.
The possibility that essential loci in the zeste-white region of the Drosophila melanogaster X chromosome are expressed both maternally and zygotically has been tested. Maternal gene activity was varied by altering gene dose, and zygotic gene activity was manipulated by use of position-effect variegation of a duplication. Viability is affected when both maternal and zygotic gene activity are reduced, but not when either maternal or zygotic gene activity is normal. Tests of a set of overlapping deficiencies demonstrate that at least three sections of the zeste-white region yield maternal zygotic lethal interactions. Single-cistron mutations at two loci in one of these segments have been tested, and maternal heterozygosity for mutations at both loci give lethal responses of mutant-duplication zygotes. Thus, at least four of the 13 essential functions coded in the zeste-white region are active both maternally and zygotically, suggesting that a substantial fraction of the genome may function at both stages. The normal survival of zygotes when either maternal gene expression or zygotic gene expression is normal, and their inviability when both are depressed, suggests that a developmental stage exists when maternally determined functions and zygotically coded functions are both in use.  相似文献   

14.
Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males   总被引:5,自引:5,他引:0       下载免费PDF全文
McKee B 《Genetics》1984,106(3):403-422
In Drosophila melanogaster males, deficiency for X heterochromatin causes high X-Y nondisjunction and skewed sex chromosome segregation ratios (meiotic drive). Y and XY classes are recovered poorly because of sperm dysfunction. In this study it was found that X heterochromatic deficiencies disrupt recovery not only of the Y chromosome but also of the X and autosomes, that both heterochromatic and euchromatic regions of chromosomes are affected and that the "sensitivity" of a chromosome to meiotic drive is a function of its length. Two models to explain these results are considered. One is a competitive model that proposes that all chromosomes must compete for a scarce chromosome-binding material in Xh(-) males. The failure to observe competitive interactions among chromosome recovery probabilities rules out this model. The second is a pairing model which holds that normal spermiogenesis requires X-Y pairing at special heterochromatic pairing sites. Unsaturated pairing sites become gametic lethals. This model fails to account for autosomal sensitivity to meiotic drive. It is also contradicted by evidence that saturation of Y-pairing sites fails to suppress meiotic drive in Xh(- ) males and that extra X-pairing sites in an otherwise normal male do not induce drive. It is argued that meiotic drive results from separation of X euchromatin from X heterochromatin.  相似文献   

15.
16.
17.
Efforts were made to discriminate new genetic variants among electrophoretic alleles that are associated with chromosome 3 inversions of Drosophila pseudoobscura and D. persimilis. Apparent genetic similarities for electrophoretic alleles between these two species and among the common inversions they carry were reexamined by altering gel concentration and buffer pH. At the amylase locus, the 1.09 electrophoretic allele could be further separated into two allelic classes that differentiated the WT and KL arrangements. Similarly, the 0.84 electrophoretic allele was divided into two allelic classes, one characteristic of the Santa Cruz phylad arrangements, TL and SC, and the other found in strains of the Standard phylad arrangements and CH. Uncommon amylase alleles proved to be different alleles in the two species. No new allelic variants, however, could be found among strains with the amylase 1.00 allele, the commonest allele in the Standard phylad of both species. No major new allelic variation was detected for acid phosphatase-3 and larval protein-10 that revealed any further differentiation among species or inversions. Variation at all three loci in strains of the Bogota population remained genetically similar to variation in strains of mainland D. pseudoobscura.  相似文献   

18.
19.
20.
A new mutant, mit (mitotic loss inducer), is described. The mutant is recessive and maternal in action, producing gynandromorphs and haplo-4 mosaics among the progeny of homozygous mit females. Mosaic loss of maternal or paternal chromosomes can occur. The probabilities of either maternal or paternal X chromosome loss are equal. mit has been mapped to approximately 57 on the standard X chromosome map.-Using gyandromorphs generated by mit, a morphogenetic fate map, placing the origins of 40 cuticular structures on the blastoderm surface, has been constructed. This fate map is consistent with embryological data and with the two other fate maps generated in different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号