共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneously hypertensive rats (SHRs) are used as a model for attention-deficit/hyperactivity disorder (ADHD), since SHRs are hyperactive and show defective sustained attention in behavioral tasks. The psychostimulants amphetamine and methylphenidate and the selective norepinephrine reuptake inhibitor atomoxetine are used as ADHD medications. The effects of high K + stimulation or psychostimulants on brain norepinephrine or dopamine release in SHRs have been previously studied both in vitro and in vivo, but the effects of atomoxetine on these neurotransmitters have not. The present study examined the effects of administration of atomoxetine on extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex of juvenile SHRs and Wistar-Kyoto (WKY) rats. Baseline levels of prefrontal norepinephrine, dopamine, and serotonin were similar in SHRs and WKY rats. Systemic administration of atomoxetine (3 mg/kg) induced similar increases in prefrontal norepinephrine and dopamine, but not serotonin, levels in both strains. Furthermore, there was no difference in high K +-induced increases in extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex between SHRs and WKY rats. These findings indicate that monoamine systems in the prefrontal cortex are similar between SHRs and WKY rats. 相似文献
2.
The prefrontal cortex (PFC) is a brain region responsible for executive functions including working memory, impulse control and decision making. The loss of these functions may ultimately lead to addiction. Using histological analysis combined with stereological technique, we demonstrated that the PFC is more vulnerable to chronic alcohol-induced oxidative stress and neuronal cell death than the hippocampus. This increased vulnerability is evidenced by elevated oxidative stress-induced DNA damage and enhanced expression of apoptotic markers in PFC neurons. We also found that one-carbon metabolism (OCM) impairment plays a significant role in alcohol toxicity to the PFC seen from the difference in the effects of acute and chronic alcohol exposure on DNA repair and from exaggeration of the damaging effects upon additional OCM impairment in mice deficient in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR). Given that damage to the PFC leads to loss of executive function and addiction, our study may shed light on the mechanism of alcohol addiction. 相似文献
3.
Previous animal and clinical studies have shown that acupuncture is an effective alternative treatment in the management of hypertension, but the mechanism is unclear. This study investigated the proteomic response in the nervous system to treatment at the Taichong (LR3) acupoint in spontaneously hypertensive rats (SHRs). Unanesthetized rats were subject to 5-min daily acupuncture treatment for 7 days. Blood pressure was monitored over 7 days. After euthanasia on the 7 th day, rat medullas were dissected, homogenized, and subject to 2D gel electrophoresis and MALDI-TOF analysis. The results indicate that blood pressure stabilized after the 5th day of acupuncture, and compared with non-acupoint treatment, Taichong-acupunctured rat’s systolic pressure was reduced significantly ( P<0.01), though not enough to bring blood pressure down to normal levels. The different treatment groups also showed differential protein expression: the 2D images revealed 571±15 proteins in normal SD rats’ medulla, 576±31 proteins in SHR’s medulla, 597±44 proteins in medulla of SHR after acupuncturing Taichong, and 616±18 proteins in medulla of SHR after acupuncturing non-acupoint. In the medulla of Taichong group, compared with non-acupoint group, seven proteins were down-regulated: heat shock protein-90, synapsin-1, pyruvate kinase isozyme, NAD-dependent deacetylase sirtuin-2, protein kinase C inhibitor protein 1, ubiquitin hydrolase isozyme L1, and myelin basic protein. Six proteins were up-regulated: glutamate dehydrogenase 1, aldehyde dehydrogenase 2, glutathione S-transferase M5, Rho GDP dissociation inhibitor 1, DJ-1 protein and superoxide dismutase. The altered expression of several proteins by acupuncture has been confirmed by ELISA, Western blot and qRT-PCR assays. The results indicate an increase in antioxidant enzymes in the medulla of the SHRs subject to acupuncture, which may provide partial explanation for the antihypertensive effect of acupuncture. Further studies are warranted to investigate the role of oxidative stress modulation by acupuncture in the treatment of hypertension. 相似文献
4.
Abstract: Adult male Sprague-Dawley rats anesthetized with chloral hydrate and pentobarbital sodium were used as two different treatment groups. Conscious rats were used as a control group. By using baseline (precocaine) concentration as 100%, after cocaine administration (3.0 mg/kg i.v.), the maximal dopamine (DA) increase occurring at the first microdialysis collection period (20 min) in the medial prefrontal cortex was 299 ± 46% for the chloral hydrate group, 168 ± 12% for the pentobarbital sodium group, and 325 ± 23% for the conscious group. At the same time, norepinephrine (NA) increases reached a maximum and were 162 ± 20%, 100 ± 5%, and 141 ± 17%, respectively. The maximal changes of DA and NA in the chloral hydrate group and in the control group were both significantly higher than that in the pentobarbital sodium group. Meanwhile, the cocaine concentration was higher over a 100-min period of time in the chloral hydrate group when compared with the pentobarbital group and the control group. The peak cocaine concentration in dialysate occurred in the same time slot of maximal DA and NA responses, which were 0.65 ± 0.08, 0.30 ± 0.02, and 0.41 ± 0.05 µ M , respectively. Anesthetics suppress the pharmacologic response of neurons, which may explain the difference in catecholamine response between the pentobarbital sodium and the conscious groups. Conversely, because there was no significant difference in DA and NA response between the chloral hydrate group and the conscious group, it may possibly be due to the balancing effect between the higher existing cocaine concentration and the anesthetic suppression on pharmacological response of neurons in the chloral hydrate group. The effect of guide cannula implantation on the cocaine-induced catecholamine response was also evaluated. 相似文献
6.
Social isolation during postnatal development leads to behavioral and neurochemical changes, and a particular susceptibility of the prefrontal cortex to interventions during this period has been suggested. In addition, some studies showed that consumption of a palatable diet reduces some of the stress effects. Therefore, our aim is to investigate the effect of isolation stress in early life on some parameters of oxidative stress and energy metabolism (Na(+),K(+)-ATPase activity, respiratory chain enzymes activities and mitochondrial mass and potential) in prefrontal cortex of juvenile and adult male rats. We also verified if the consumption of a palatable diet during the prepubertal period would reduce stress effects. The results showed that, in juvenile animals, isolation stress increased superoxide dismutase and Complex IV activities and these effects were still observed in the adulthood. An interaction between stress and diet was observed in catalase activity in juveniles, while only the stress effect was detected in adults, reducing catalase activity. Access to a palatable diet increased Na(+),K(+)-ATPase activity in juveniles, an effect that was reversed after removing this diet. On the other hand, isolation stress induced a decreased activity of this enzyme in adulthood. No effects were observed on glutathione peroxidase, total thiols and free radicals production, as well as on mitochondrial mass and potential. In conclusion, isolation stress in the prepubertal period leads to long-lasting changes on antioxidant enzymes and energetic metabolism in the prefrontal cortex of male rats, and a palatable diet was not able to reverse these stress-induced effects. 相似文献
7.
We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring
dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex
regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D 1 receptor was also examined during AS and CUS using A 68930, a D 1 selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days).
AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted
these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS
led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation
radioligand binding assays revealed a significant decrease in the number of D 1-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum
and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D 1-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D 2-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the
stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation
provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical
and behavioral effects of D 1 agonist pretreatment suggest specific modulatory role of D 1 receptor under such stressful episodes. 相似文献
8.
Schizophrenia is a debilitating disorder that may have a neurodevelopmental origin. For this reason, animal models based on neonatal insults or manipulations have been extensively used to demonstrate schizophrenia-related behaviors. Among those, the neonatal ventral hippocampus lesion (nVHL) is largely used as a model of schizophrenia-related behavior as it mimics behavioral and neurochemical abnormalities often seen in schizophrenic patients including hyperlocomotion in a novel environment. To investigate the neuroanatomical basis of coding novelty in the nVHL rat, we assessed the behavioral locomotor activity paradigm in a novel environment and measured expression of c-Fos, a marker of neural activation, in brain regions involved in the process of coding novelty or locomotion. Upon reaching adulthood, nVHL rats showed hyperlocomotion in the novel environment paradigm. Moreover, in nVHL rats the expression of c-Fos was greater in the prefrontal cortex (PFC) and CA1 region of the dorsal hippocampus compared to sham rats. Whereas similar expression of c-Fos was observed in the basolateral amygdala, nucleus accumbens and dentate gyrus region of hippocampus of nVHL and sham rats. These results suggest that the nVHL disrupts the neural activity in the PFC and CA1 region of hippocampus in the process of coding novelty in the rat. 相似文献
9.
Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders.
We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities
similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels
of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg
on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied
by a decrease of glycine and alanine; measured 10–14 weeks after the injections. Four injections of thimerosal at a dose of
12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics,
could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid
increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.)
prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication
of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone
reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive
accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing
vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against
mercurials-induced neurotoxicity. 相似文献
10.
Phencyclidine (PCP) administration in rodents has been used to model aspects of schizophrenia. One aspect of such treatment has been the enhancement of amphetamine-induced increase of dopamine in the prefrontal cortex and striatum. To further characterize this mechanism rats were treated for 2 weeks with continuous PCP (15 mg/kg per day via Alzet minipump). Rats were implanted with a microdialysis probe into the prefrontal cortex (PFC) or striatum. Amphetamine was administered locally via the dialysis probe during one collection period and changes in extracellular dopamine were monitored. The effect of local administration of the dopamine uptake blocker nomifensine was also measured. Amphetamine (10 M) and nomifensine (10 M) increased the level of dopamine in both the PFC and striatum. PCP administration did not alter the response to amphetamine or nomifensine in the PFC, but reduced this response about 2-fold in striatum. To examine effects of continuous PCP administration on dopamine autoreceptor function, release of [ 3H]dopamine in response to electrical stimulation and in the presence of a dopamine agonist or antagonist was tested in striatal and prefrontal cortical tissue. Autoreceptor responses were similar in control and PCP-treated tissues. We conclude that the brain region-specific enhancement of dopamine release by peripheral amphetamine administration in rats after PCP is not likely mediated by alterations in the dopamine autoreceptors or changes in the dopamine transporter. The selective local responses of amphetamine indicates heterogeneous regional effects of continuous PCP on NMDA receptor function; effects that influence both regional excitatory responses and the overall dynamics of tonic excitatory/inhibitory inputs to the PFC and striatum. 相似文献
12.
Fluoxetine at 10 and 25 mg/kg increased (167 and 205%, respectively) the extracellular dopamine concentration in the prefrontal cortex, whereas 25 (but not 10) mg/kg citalopram raised (216%) dialysate dopamine. No compound modified dialysate dopamine in the nucleus accumbens. The effect of 25 mg/kg of both compounds on cortical extracellular dopamine was not significantly affected by 300 mg/kg p-chlorophenylalanine (PCPA) (fluoxetine, saline, 235%; PCPA, 230%; citalopram, saline, 179%; PCPA, 181%). PCPA depleted tissue and dialysate serotonin by approximately 90 and 50%, respectively, and prevented the effect of fluoxetine and citalopram on dialysate serotonin (fluoxetine, saline, 246%; PCPA, 110%; citalopram, saline, 155%; PCPA, 96%). Citalopram significantly raised extracellular serotonin from 0.1 to 100 microM (251-520%), whereas only 10 and 100 microM increased dialysate dopamine (143-231%). Fluoxetine similarly increased extracellular serotonin (98-336%) and dopamine (117-318%). PCPA significantly reduced basal serotonin and the effects of 100 microM fluoxetine (saline, 272%; PCPA, 203%) and citalopram (saline, 345%; PCPA, 258%) on dialysate serotonin but did not modify their effect on dopamine (fluoxetine, saline, 220%; PCPA, 202%; citalopram, saline, 191%; PCPA, 211%). The results clearly show that the effects of fluoxetine and of high concentrations of citalopram on extracellular dopamine do not depend on their effects on serotonin. 相似文献
15.
Effects were studied of single (40 min) or repeated exercise load (tredmill running, 14 m/min, 30 min) on the physiological and biochemical blood parameters characterizing the organism energetic and metabolic processes in complex experiments on male Wistar rats, on spontaneously hypertensive rats of the SHR line, and their normotensive control WKY. The mixed blood was used for determination of hematocrit, red blood cell count, hemoglobin concentration, level of 2,3-diphosphoglycerate (2,3-DPG) in red blood cells, erythrocyte acetylcholinesterase (AChE) activity, glucose, cholesterol, and triglyceride concentration, as well as plasma corticosterone level. To assess the erythrocyte population characteristics, the acidity erythrogram was determined. The weights of adrenal glands and spleen were evaluated. The single running induced a typical stress-response. After the repeated exercise load (the 7–14-day running), Wistar and WKY rats were well adopted to the load, unlike the SHR line rats that were practically not adapted to the repeated tredmill running.__________Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 2, 2005, pp. 129-133.Original Russian Text Copyright © 2005 by Maslova, Khama-Murad, Kazennov, Kislyakova, Tavrovskaya, Barvitenko. 相似文献
16.
Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain’s responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A?+?CUMS), aged rats subjected to CUMS and treated with young plasma (A?+?CUMS?+?YP), and aged rats subjected to CUMS and treated with old plasma (A?+?CUMS?+?OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated. 相似文献
18.
To elucidate the effects of aging accompanied with hypertension on brain nucleic acid, we measured both the DNA and RNA contents of six specific brain regions in adult (5–6 months old) and aged (18–22 months old) female spontaneously hypertensive rats (SHRs). Although no statistical difference was observed in the RNA content, the DNA content did tend to increase in the hippocampal CA1 of aged SHR (4.24 ± 0.55 ng/g protein, mean ± SD, n = 6) in comparison to that of adult SHR (3.21 ± 0.71 ng/g protein, n = 4). Hence, aged SHRs showed a significant decrease in the RNA to DNA ratio in the CA1 subfield of the hippocampus (3.79 ± 0.61) compared to adult SHR (5.27 ± 0.81). On the other hand, no other regions, except for the dorsolateral region of the striatum, showed any difference in the RNA/DNA ratio between aged and adult SHR. We therefore conclude that subtle changes in the nucleic acid occur in vulnerable regions of the brain in aged SHRs. 相似文献
19.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed. 相似文献
20.
The stroke-prone spontaneously hypertensive rat (SHRSP) is vulnerable to delayed neuronal death (DND) in the CA1 subfield
of the hippocampus after the transient forebrain ischemia by the occlusion of the bilateral carotid arteries. The present
study was designed to show that the genetic factors independent of high blood pressure contributed to the high incidence of
DND in SHRSP. Male rats of the four strains, SHRSP/Izm, SHRSP/Ngsk, SHR/Izm and a congenic strain for the blood pressure quantitative
trait locus on chromosome 1 [SHRSP.WKY-( D1Wox29-D1Arb21)/Izm]were used in the experiments. At 13 weeks of age, the bilateral carotid arteries of rats were occluded for 10 min under
anesthesia with their body temperature kept at 37°C. Seven days after the transient ischemia, the loss of the pyramidal cells
in the CA1 was evaluated histologically. In some experiments, the blood flow was monitored with a laser Doppler flowmeter
during the transient ischemia. The blood pressure in SHRSP/Izm was significantly greater than that in the other three strains.
The incidence of DND, however, was not significantly different among SHRSP/Izm, SHRSP/Ngsk and the congenic strain (82, 74
and 65%, respectively), while SHR/Izm showed a significantly lower incidence (20%). Neither a significant correlation between
the incidence of DND and the blood flow reduction during the occlusion, nor a significant inter-strain difference in the blood
flow reduction was observed. The genetic factors independent of high blood pressure may contribute to the greater susceptibility
to DND in SHRSP. 相似文献
|