首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transformer (tra) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina. Sex-specific tra RNA splicing is controlled by Sex lethal (Sxl) in Drosophila melanogaster but is auto-regulated in L. cuprina. Sxl also represses X chromosome dosage compensation in female D. melanogaster. We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L. cuprina. In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L. cuprina. However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos.  相似文献   

2.
3.
C Kemkemer  A Catalán  J Parsch 《Heredity》2014,112(2):149-155
Genomic analyses of Drosophila species suggest that the X chromosome presents an unfavourable environment for the expression of genes in the male germline. A previous study in D. melanogaster used a reporter gene driven by a testis-specific promoter to show that expression was greatly reduced when the gene was inserted onto the X chromosome as compared with the autosomes. However, a limitation of this study was that only the expression regulated by a single, autosomal-derived promoter was investigated. To test for an increase in expression associated with ‘escaping'' the X chromosome, we analysed reporter gene expression driven by the promoters of three X-linked, testis-expressed genes (CG10920, CG12681 and CG1314) that were inserted randomly throughout the D. melanogaster genome. In all cases, insertions on the autosomes showed significantly higher expression than those on the X chromosome. Thus, even genes whose regulation has adapted to the X-chromosomal environment show increased male germline expression when relocated to an autosome. Our results provide direct experimental evidence for the suppression of X-linked gene expression in the Drosophila male germline that is independent of gene dose.  相似文献   

4.

Background

In Drosophila melanogaster dosage compensation of most X-linked genes is mediated by the male-specific lethal (MSL) complex, which includes MOF. MOF acetylates histone H4 at lysine 16 (H4K16ac). The X-linked Larval serum protein one α (Lsp1α) gene has long been known to be not dosage compensated. Here we have examined possible explanations for why the Lsp1α gene is not dosage compensated.

Results

Quantitative RNase protection analysis showed that the genes flanking Lsp1α are expressed equally in males and females and confirmed that Lsp1α is not dosage compensated. Unlike control X-linked genes, Lsp1α was not enriched for H4K16ac in the third instar larval fat body, the tissue in which the gene is actively expressed. X-linked Lsp1α promoter-lacZ reporter transgenes are enriched for H4K16ac in third instar larval fat body. An X-linked reporter gene bracketed by Lsp1α flanking regions was dosage compensated. One of the genes flanking Lsp1α is expressed in the same tissue. This gene shows a modest enrichment for H4K16ac but only at the part of the gene most distant from Lsp1α. Phylogenetic analyses of the sequences of the genomes of 12 Drosophila species shows that Lsp1α is only present within the melanogaster subgroup of species.

Conclusion

Lsp1α is not modified by the MSL complex but is in a region of the X chromosome that is regulated by the MSL complex. The high activity or tissue-specificity of the Lsp1α promoter does not prevent regulation by the MSL complex. The regions flanking Lsp1α do not appear to block access by the MSL complex. Lsp1α appears to have recently evolved within the melanogaster subgroup of Drosophila species. The most likely explanation for why Lsp1α is not dosage compensated is that the gene has not evolved a mechanism to independently recruit the MSL complex, possibly because of its recent evolutionary origin, and because there appears to be a low level of bound MSL complex in a nearby gene that is active in the same tissue.  相似文献   

5.
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.  相似文献   

6.
7.
In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.  相似文献   

8.
9.
10.
11.
《Genomics》2021,113(4):1828-1837
The evolution of sex chromosomes, and patterns of sex-biased gene expression and dosage compensation, are poorly known among early winged insects such as odonates. We assembled and annotated the genome of Ischnura elegans (blue-tailed damselfly), which, like other odonates, has a male-hemigametic sex-determining system (X0 males, XX females). By identifying X-linked genes in I. elegans and their orthologs in other insect genomes, we found homologies between the X chromosome in odonates and chromosomes of other orders, including the X chromosome in Coleoptera. Next, we showed balanced expression of X-linked genes between sexes in adult I. elegans, i.e. evidence of dosage compensation. Finally, among the genes in the sex-determining pathway only fruitless was found to be X-linked, while only doublesex showed sex-biased expression. This study reveals partly conserved sex chromosome synteny and independent evolution of dosage compensation among insect orders separated by several hundred million years of evolutionary history.  相似文献   

12.
Dimorphic sex chromosomes create problems. Males of many species, including Drosophila, are heterogametic, with dissimilar X and Y chromosomes. The essential process of dosage compensation modulates the expression of X-linked genes in one sex to maintain a constant ratio of X to autosomal expression. This involves the regulation of hundreds of dissimilar genes whose only shared property is chromosomal address. Drosophila males dosage compensate by up regulating X-linked genes 2 fold. This is achieved by the Male Specific Lethal (MSL) complex, which is recruited to genes on the X chromosome and modifies chromatin to increase expression. How the MSL complex is restricted to X-linked genes remains unknown. Recent studies of sex chromosome evolution have identified a central role for 2 types of repetitive elements in X recognition. Helitrons carrying sites that recruit the MSL complex have expanded across the X chromosome in at least one Drosophila species.1 Our laboratory found that siRNA from an X-linked satellite repeat promotes X recognition by a yet unknown mechanism.2 The recurring adoption of repetitive elements as X-identify elements suggests that the large and mysterious fraction of the genome called “junk” DNA is actually instrumental in the evolution of sex chromosomes.  相似文献   

13.
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.  相似文献   

14.
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals.  相似文献   

15.
The present report presents the results of starch and polyacrylamide gel electrophoretic studies of the influence of the X chromosome on the expression of esterase-6 in D. melanogaster × D. simulans hybrids heterozygous for locus Est-6 as well as studies of the influence of autosomes on esterase expression in Drosophila of the virilis group. A differential expression of esterase-6 has been detected in D. melanogaster × D. simulans hybrid males. A differential decrease in the activity of esterase-6 (both F and S allozymes) derived from D. melanogaster has been noted. In hybrid females, the activity of parental esterases is the same. It is suggested that the X chromosome regulates the expression of esterase-6 in D. melanogaster. Analysis of individuals obtained in different schemes of crosses between different species of Drosophila of the virilis group by use of stocks marked with mutations in various chromosomes indicates that other autosomes (in particular, autosomes 4 and 5) also influence the phenotypic expression of esterases (which are controlled by genes located on the second chromosome).  相似文献   

16.
17.
18.
19.
20.
Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号