首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to examine whether the aged mice with naturally occurring cognitive deficits in learning and memory would benefit from supplementation of choline acetyltransferase (ChAT), the biosynthetic enzyme for neurotransmitter acetylcholine. Delivered by protein transduction domain (PTD), ChAT could pass through the blood-brain barrier, enter the neurons, interact with heat shock protein 70kDa, and retain enzyme activity. In behavior tests, PTD-ChAT given to the aged and memory-deficient mice almost completely reversed the behavioral changes, such as impairment of memory retention in the step-through test (an index of long-term memory) and prolonged swimming time in water maze test (an index of spatial recognition memory). The results suggest a novel and potential therapeutic use of PTD-ChAT in the age-related cognitive deficits.  相似文献   

2.
Y Sei  P K Arora  P Skolnick  I A Paul 《FASEB journal》1992,6(11):3008-3013
Mice infected with an immunosuppressive murine leukemia virus (MuLV) mixture, LP-BM5, displayed profound and selective deficits in spatial learning in a modified Morris water maze. These deficits appeared before the appearance of gross neurological impairment or histopathological changes in the central nervous system. Thus, LP-BM5-infected mice displayed deficits in several aspects of trained performance compared to controls. Furthermore, a failure to exhibit any evidence of task acquisition in this maze was observed almost twice as frequently (P less than 0.0005) in infected mice as in uninfected controls. Moreover, in the absence of gross visual, motoric, or motivational impairment, LP-BM5 MuLV-infected animals exhibited neither the target directed search pattern nor the spatial preference characteristic of controls. The spatial learning and memory deficit described here is the first report of cognitive impairment accompanying viral-induced immunosuppression in a nonprimate species.  相似文献   

3.
β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16 kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1 μg) effectively alleviated Aβ1–42 (20 μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1–42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP.  相似文献   

4.
Nishiga M  Sugimoto Y  Taga C  Fujii Y  Kamei C 《Life sciences》2002,70(18):2199-2208
We examined the effects of a histidine-deficient diet on brain histamine contents as well as on learning and memory using the eight-arm radial maze in rats. A significant decrease in histamine content in the hippocampus was observed after long-term feeding of rats with a histidine-deficient diet. At the same time, significant enhancement of the acquisition process in radial maze performance was also observed. Pyrilamine did not show a significant effect on radial maze performance in histidine-deficient rats. On the other hand, pyrilamine caused a significant spatial memory deficit in control rats. Scopolamine was effective in inhibiting spatial memory in both histidine-deficient and control rats. MK-801 caused spatial memory deficits more potently in histidine-deficient rats than in controls. Brain glycine contents showed a significant increase in the hippocampus in histidine-deficient rats. These results indicated that the spatial memory deficits induced by MK-801 in histidine-deficient rats are closely related to increased glycine levels and activation of NMDA receptors.  相似文献   

5.
6.
Monkeys have strong abilities to remember the visual properties of potential food sources for survival in the nature. The present study demonstrated the first observations of rhesus monkeys learning to solve complex spatial mazes in which routes were guided by visual cues. Three monkeys were trained in a maze (6 m x 6 m) included of four different mazes. We recorded the cue and cup errors, latencies, and pathway for each trial. The data showed that monkeys learned the target place after three days in the first maze and spent a shorter time in learning the following mazes. The maze was an efficient method to measure the ability and proceeding of spatial memory in monkeys. Moreover, working memory can also be tested by using the maze. MK-801 at 0.02 mg/kg but not at 0.005 mg/kg impaired monkeys' retrieval of spatial memory after they learned all four mazes. The present maze may provide an efficient method to help bridging the gap in cognition between nonhuman primates and humans, and in particular to gain insight into human cognitive function and dysfunction.  相似文献   

7.
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting 7 days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects.  相似文献   

8.
Fragile X syndrome (FXS) is the most prevalent form of heritable mental retardation. It arises from a mutation in the FMR1 gene on the X chromosome that interferes with expression of fragile X mental retardation protein (FMRP) and leads to a wide range of behavioural and cognitive deficits. Previous studies have shown a deficit in basic visual perceptual processing as well as spatial abilities in FXS. How such a deficit may impact spatial navigation remains unknown. The current study extended previous research by evaluating spatial learning and memory using both virtual and physical versions of Hebb-Williams mazes, which allows for testing of humans and animals under comparable conditions. We compared the performance of individuals affected by FXS to typically developing individuals of equivalent mental age as well as the performance of Fmr1 knockout mice to wild-type control mice on the same maze problems. In human participants, performance of the comparison group improved across trials, showing expected significant decreases in both errors and latency. In contrast, the performance of the fragile X group remained at similar levels across trials. Although wild-type control mice made significantly fewer errors than the Fmr1 knockout mice, latencies were not statistically different between the groups. These findings suggest that affected humans and mice show similar spatial learning deficits attributable to the lack of FMRP. The implications of these data are discussed including the notion that Hebb-Williams mazes may represent a useful tool to examine the impact of pharmacological interventions on mitigating or reversing the symptoms associated with FXS.  相似文献   

9.
10.
A Horita  M A Carino  J Zabawska  H Lai 《Peptides》1989,10(1):121-124
Microinjection of ibotenic acid into medial septum of rats decreased choline acetyltransferase (CAT) and high-affinity choline uptake (HACU) activities in hippocampus and retarded the learning of a spatial memory task in the radial-arm maze. Administration of MK-771, a stable TRH analog, to such animals restored HACU activity in hippocampus to normal levels. Daily treatment of rats with MK-771 prior to maze running also restored the animals' learning ability. MK-771 did not enhance hippocampal HACU activity or maze performance in sham-lesioned rats. These results suggest that MK-771 reversed the ibotenic acid-induced memory deficit by restoring septohippocampal cholinergic function. MK-771 and other TRH analogs may represent novel agents for improving memory deficits produced by cholinergic insufficiency in Alzheimer's disease.  相似文献   

11.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

12.
Dysfunction of learning and memory is widely found in many neurological diseases. Understanding how to preserve the normal function of learning and memory will be extremely beneficial for the treatment of these diseases. However, the possible protective effect of minocycline in memory impairment is unknown. We used the well-established d-galactose rat amnesia model and two behavioral tasks, the Morris water maze and the step-down task, for memory evaluation. Western blot and PCR were used to examine the protein and mRNA levels of Arc/Arg3.1. We report that minocycline supplementation ameliorates both the spatial and fear memory deficits caused by d-galactose. We also found that Arc/Arg3.1, c-fos, and brain-derived neurotrophic factor levels are decreased in the d-galactose animal model, and that minocycline reverses the protein and mRNA levels of Arc in the hippocampus, suggesting the potential role of Arc/Arg3.1 in minocycline’s neuroprotective mechanism. Our study strongly suggests that minocycline can be used as a novel treatment for memory impairment in neurological diseases.  相似文献   

13.
The most profound deficits observed in Alzheimer's disease (AD) are in domains of episodic and working memory systems. Transgenic (Tg) mice expressing mutated human amyloid precursor protein (APP) genes offer a model to study the effect of AD pathology on cognition. We reported previously that APP TgCRND8 mice showed deficits in a reference and working memory evaluated in a Morris water-maze test. In this study, we evaluated the working memory of TgCRND8 mice comparing two training paradigms in a six-arm radial water maze. In the first paradigm, the exploration of the maze was constrained, forcing the mice to use a spatial mapping strategy. In the second paradigm, mice were unconstrained in their exploration of the maze. TgCRND8 mice proved to be significantly impaired in spatial working memory in both paradigms as compared with their non-transgenic littermates. The analysis of data revealed that forcing mice to use a spatial strategy during training caused only a moderate improvement in the performance of all mice. However, unconstrained exploration of the maze not only resulted in a fast learning in control mice, but also facilitated the development of a chaining strategy in spatially impaired TgCRND8 mice. In conclusion, TgCRND8 mice showed impairment in spatial working memory but retained a plasticity to choose alternative search strategies.  相似文献   

14.
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.  相似文献   

15.

Objective

Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer''s disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI).

Methods

We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles.

Results

Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact.

Interpretation

Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.  相似文献   

16.
Exogenous administration of estrogen has been shown to significantly reduce ischemia-induced neuronal degeneration. However, the long-term impact of such treatment on neuronal protection and functional recovery remain largely unknown. The present study assessed the effects of a 15-day pretreatment with 17beta-estradiol on memory deficits and neuronal damage up to 6 months following a 10-min global ischemia in rats. Four groups of ovariectomized female rats [sham-operated and ischemic rats receiving a 15-day pretreatment of either the vehicle or 17beta-estradiol (100 microg/kg)] were tested. The 8-arm radial maze and object recognition tests served to evaluate the impact of 17beta-estradiol treatment on ischemia-induced spatial and recognition memory impairments, respectively. Testing in the radial maze was initiated at two distinct time intervals following reperfusion (7 and 120 days) to evaluate changes in memory functions over time. Our findings revealed long-lasting neuroprotective effects of 17beta-estradiol treatment on hippocampal CA1 pyramidal cells in ovariectomized ischemic rats (43.5% greater neuronal survival than observed in vehicle-treated ischemic animals). Importantly, this neuronal protection translated into significant improvements of recognition and spatial memory functions in estradiol-treated ischemic rats.  相似文献   

17.
Isoflurane anesthesia induces neuroapoptosis in the development of the brain. In this study, neonatal rats and hippocampal neurons were subjected to isoflurane exposure, in which the effect of miR-124 on the neurological deficits induced by isoflurane was evaluated. Isoflurane anesthesia models were induced in neonatal SD rats aged 7 days and then treated with miR-124 agomir, miR-124 antagomir, or LV-CMV-early growth response 1 (EGR1) plasmids. Then, the spatial learning and memory ability of rats were evaluated by Morris water maze. Furthermore, primary hippocampal neurons cultured 7 days were also exposed to isoflurane and transfected with miR-124 agomir, miR-124 antagomir, or LV-CMV-EGR1 plasmids. The targeting relationship of miR-124 and EGR1 was verified by the dual-luciferase reporter gene assay. To identify the effect of miR-124 on neuron activities, the viability and apoptosis of hippocampal neurons were assessed. In response to isoflurane exposure, miR-124 expression was reduced and EGR1 expression was increased in the hippocampal tissues and neurons. The isoflurane anesthesia damaged rats' spatial learning and memory ability, and reduced viability, and promoted apoptosis of hippocampal neurons. EGR1 was targeted and negatively regulated by miR-124. The treatment of miR-124 agomir improved rats' spatial learning and memory ability and notably increased hippocampal neuron viability and resistance to apoptosis, corresponding to an increased brain-derived neurotrophic factor (BDNF) expression, inhibited expression of proapoptotic factors (cleaved-Caspase-3 and Bax), and enhanced the expression of antiapoptotic factor (Bcl-2). Upregulated miR-124 inhibited the expression of EGR1, by which mechanism miR-124 reduced the neurological deficits induced by isoflurane in neonatal rats through inhibiting apoptosis of hippocampal neurons.  相似文献   

18.
The transition to motherhood results in a number of hormonal, neurological, and behavioral changes necessary to ensure offspring survival. Once motherhood is established, further neurological and behavioral changes may result with additional parity and mothering. Recent research has shown that motherhood enhances both hippocampal-dependent learning and memory and oxytocin-induced long-term potentiation, suggesting that the hippocampus is affected by mothering. In turn, degree of maternal behavior, either high or low, has been shown to affect spatial learning and memory performance in adult offspring. The present experiment aimed to investigate the effect of reproductive experience (nulli-, primi-, and multiparity and mothering) and degree of maternal behavior on hippocampus-dependent learning and memory in the mother. Results show that regardless of error type, primiparous rats make fewer errors compared to nulliparous rats, while multiparous rats show a trend towards making fewer errors compared to nulliparous rats. In addition, mothers who spend less time licking and nursing offspring had fewer reference memory errors. Perhaps the enhanced learning and memory in the inexperienced, new mother allows her to effectively acquire the suite of maternal behaviors necessary to ensure offspring survival and achieve reproductive success with subsequent reproductive experience.  相似文献   

19.
The results of the study of the mnemotropic activity of the ergot alkaloid agroclavine are presented. Effects of this substance administered in doses of 1, 10, 25, 50, and 200 micrograms/kg on learning and spatial memory were studied in a Morris water maze. Agroclavine had no effect on learning but sharply impaired the retention. This memory impairment persisted for 48 h after the agroclavine administration. Agroclavine treatment did not affect the ability of mice to learn and retain a new skill. Possible mechanisms of the agroclavine effect on memory are discussed.  相似文献   

20.
Long-term exposure to low levels of lead (Pb2+) has been shown to produce learning and memory deficits in rodents and humans. These deficits are thought to be associated with altered brain monoamine neurotransmission. Increased brain 5-HT (5-hydroxytryptamine; serotonin) activity is thought to be a prerequisite for maintaining control over the cognitive information process, and is said to have a role in learning and memory. This study was designed to investigate the effects of Pb2+ administration on brain 5-HT metabolism and memory function in rats. Rats were injected daily for three weeks with Pb2+-acetate at a dose of 100 mg/kg body weight. The assessment of memory was done using the Radial arm maze (RAM) and Passive avoidance tests. The results showed spatial working memory (SWM) deficits as well as decreased brain 5-HT metabolism. Increased serotonin activity is considered to be an indication of improved cognitive performance. The results are discussed in the context of lead-induced decreases in 5-HT metabolism playing a role in the impairment of memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号