首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the 1990s, brown root rot caused by Phellinus noxius (Corner) Cunningham has become a major tree disease in Taiwan. This fungal pathogen can infect more than 200 hardwood and softwood tree species, causing gradual to fast decline of the trees. For effective control, we must determine how the pathogen is disseminated and how the new infection center of brown root rot is established. We performed Illumina sequencing and de novo assembly of a single basidiospore isolate Daxi42 and obtained a draft genome of ~40 Mb. By comparing the 12,217 simple sequence repeat (SSR) regions in Daxi42 with the low-coverage Illumina sequencing data for four additional P. noxius isolates, we identified 154 SSR regions with potential polymorphisms. A set of 13 polymorphic SSR markers were then developed and used to analyze 329 P. noxius isolates collected from 73 tree species from urban/agricultural areas in 14 cities/counties all around Taiwan from 1989 to 2012. The results revealed a high proportion (~98%) of distinct multilocus genotypes (MLGs) and that none of the 329 isolates were genome-wide homozygous, which supports a possible predominant outcrossing reproductive mode in P. noxius. The diverse MLGs exist as discrete patches, so brown root rot was most likely caused by multiple clones rather than a single predominant strain. The isolates collected from diseased trees near each other tend to have similar genotype(s), which indicates that P. noxius may spread to adjacent trees via root-to-root contact. Analyses based on Bayesian clustering, F ST statistics, analysis of molecular variance, and isolation by distance all suggest a low degree of population differentiation and little to no barrier to gene flow throughout the P. noxius population in Taiwan. We discuss the involvement of basidiospore dispersal in disease dissemination.  相似文献   

2.
To investigate the genetic differentiation between the Bonin (Ogasawara) Islands' freshwater goby Rhinogobius sp. Bonin Island (BI) form (Ogasawara-yoshinobori) and the Japan–Ryukyu Archipelago relatives, the mitochondrial DNA (mtDNA) phylogeny of Japanese Rhinogobius species was inferred from partial nucleotide sequences of the mitochondrial NADH dehydrogenase 5 subunit (ND5) gene (945 bp). The resultant tree showed that the Bonin Islands group separated first from the other Japanese lineage, and a test calculation indicated the divergence date to be approximately 3 million years BP. Although it is necessary to use a more reliable estimate to confirm the divergence date, Rhinogobius sp. BI has retained its mtDNA lineage in the islands for millions of years.  相似文献   

3.
Ceratocystis fimbriata Ellis & Halsted recently was recorded causing seed and seedling blight on Carapa guianensis Aubl. (andiroba), a tree species native to the Amazon Rainforest and prized for its valuable timber and medicinal seed oil. C. fimbriata more commonly causes wilt type diseases in woody hosts, especially on non-native host trees. However, on andiroba the disease occurs on seedlings and seeds, affecting the species regeneration. We studied 73 isolates of C. fimbriata on andiroba from three regions of the Amazon Basin to see if they represented natural or introduced populations. Analysis of ITS rDNA sequences and phylogenetic analysis of mating type genes revealed new haplotypes of C. fimbriata from the Latin American Clade that were closely related to other Brazilian populations of the fungus. In mating experiments, andiroba isolates were inter-fertile with tester strains of C. fimbriata from Brazil and elsewhere, confirming that they belong to a single biological species. Using microsatellite markers, 14 genotypes and populations with intermediate levels of genetic variability were found, suggesting that the fungus is indigenous to the Amazon Basin. Inoculation tests indicated that the andiroba isolates are host-specialized on andiroba, supporting the proposition of the special form C. fimbriata f. sp. carapa.  相似文献   

4.
Bemisia tabaci (Gennadius) is considered to be the most economically important pest insect worldwide. The invasive variant, the Q biotype of B. tabaci was first identified in 2004, and has caused significant crop yield losses in Japan. The distribution and molecular characterization of the different biotypes of B. tabaci in Japan have been little investigated. In this study, B. tabaci populations were sampled from the Japanese Archipelago, the Amami Archipelago and the Ryukyu Islands between 2004 and 2008, and the nucleotide sequences of their mitochondrial cytochrome oxidase I genes were determined. Bayesian phylogenetic relationship analysis provided the first molecular evidence that the indigenous Japanese populations could be separated into four distinct genetic groups. One major native population from the Japanese Archipelago, given the genetic group name Lonicera japonica, was separated into an independent group, distinct from the other genetic groups. The second major population, the Nauru biotype in the Asia II genetic group, was identified in the Amami Archipelago and the Ryukyu Islands. Two distinct minor genetic groups, the Asia I and the China, were also identified. One invasive B‐related population belonging to the Mediterranean/Asia Minor/Africa genetic group has been identified in Honshu. All lineages generated by the phylogenetic analyses were supported by high posterior probabilities. These distinct indigenous B. tabaci populations developed in Japan under geographical and/or biological isolation, prior to recent invasions of the B and Q biotypes.  相似文献   

5.
A total of 28 deuteromycetous isolates obtained from forest environments in the Ogasawara (Bonin) Islands and the Ryukyu Islands, Japan, were identified to five Cylindrocladium and related fungal species (Calonectria kyotoensis (anamorph: Cylindrocladium floridanum), Cylindrocladiella lageniformis, Cylindrocladium camelliae, Cylindrocladium citri, and Cylindrocladium tenue), excluding two unknowns. Cylindrocladiella lageniformis is a new record, and the others are rarely reported in Japan.  相似文献   

6.
Quercus miyagii is an endemic tree species in the Ryukyu Islands, Japan. We isolated and characterized 15 microsatellite loci in this species. The number of alleles ranged from 2 to 16 and expected heterozygosities from 0.07 to 0.92. This set of markers is potentially useful to investigate the genetic structure, gene flow, and the biogeographic history of Q. miyagii in the Ryukyu Islands, Japan.  相似文献   

7.
The Ryukyu Archipelago is located in the southwest of the Japanese islands and is composed of dozens of islands, grouped into the Miyako Islands, Yaeyama Islands, and Okinawa Islands. Based on the results of principal component analysis on genome-wide single-nucleotide polymorphisms, genetic differentiation was observed among the island groups of the Ryukyu Archipelago. However, a detailed population structure analysis of the Ryukyu Archipelago has not yet been completed. We obtained genomic DNA samples from 1,240 individuals living in the Miyako Islands, and we genotyped 665,326 single-nucleotide polymorphisms to infer population history within the Miyako Islands, including Miyakojima, Irabu, and Ikema islands. The haplotype-based analysis showed that populations in the Miyako Islands were divided into three subpopulations located on Miyakojima northeast, Miyakojima southwest, and Irabu/Ikema. The results of haplotype sharing and the D statistics analyses showed that the Irabu/Ikema subpopulation received gene flows different from those of the Miyakojima subpopulations, which may be related with the historically attested immigration during the Gusuku period (900 − 500 BP). A coalescent-based demographic inference suggests that the Irabu/Ikema population firstly split away from the ancestral Ryukyu population about 41 generations ago, followed by a split of the Miyako southwest population from the ancestral Ryukyu population (about 16 generations ago), and the differentiation of the ancestral Ryukyu population into two populations (Miyako northeast and Okinawajima populations) about seven generations ago. Such genetic information is useful for explaining the population history of modern Miyako people and must be taken into account when performing disease association studies.  相似文献   

8.
The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood‐decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin‐degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3‐beta‐glucan synthases in P. noxius, which may account for its fast‐growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole‐genome sequencing showed this multinucleate species contains abundant poly‐allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra‐isolate polymorphism reflect mono‐/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.  相似文献   

9.
Twenty‐six microsatellite loci were developed and characterized for Ligustrum micranthum, a species endemic to the Ogasawara Islands, Japan. The genetic structure of this species must be clarified in order to restore the island's ecosystem. A total of 8511 primer pairs were designed from de novo sequencing. Of the 48 primer pairs selected, amplification and polymorphisms were tested using one population each from the Chichijima and Hahajima Islands of the Ogasawara Islands. Twenty‐six microsatellite loci were successfully amplified and the number of alleles for these loci ranged from five to 31 per locus, and the mean expected heterozygosities were 0.858 and 0.849, respectively. No significant deviation from the Hardy–Weinberg equilibrium was observed in either population, and no significant linkage disequilibrium was detected between any locus pair. The microsatellite loci reported in this study can be used in future studies to evaluate the genetic structure and mating system of L. micranthum.  相似文献   

10.
Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia.  相似文献   

11.
Duabanga moluccana (or locally known as sawih) is an indigenous fast growing tropical tree species that confers various advantages for the timber industry and for planted forests development. In this paper, we isolated and characterized 8 polymorphic microsatellite markers from the D. moluccana genome using ISSR-suppression PCR techniques. The number of alleles and PIC values ranged from 3 to 8 alleles per locus and from 0.488 to 0.792, respectively. Three microsatellite loci were deviated from Hardy-Weinberg equilibrium (P < 0.05). The transferability rate ranged from 24 to 100 % among the three indigenous tree species tested. This indicates that the newly developed microsatellite markers would be useful tools for population genetic studies on D. moluccana and other indigenous tree species.  相似文献   

12.
13.
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.  相似文献   

14.
Use of Capsicum frutescens L. by the Indigenous Peoples of Taiwan and the Batanes Islands. The local nomenclature, use, and distribution of C. frutescens among indigenous peoples in Taiwan and the Batanes Islands were studied. Among Taiwanese indigenous peoples, the distribution, frequency of use, and importance of C. frutescens were found to increase with decreasing latitude, which appears to have affected the local names of Capsicum and C. frutescens. The local name for Capsicum in the Batanes Islands—“sili”—is used by several indigenous peoples in Taiwan, suggesting that Capsicum was brought from the south to the north. Indigenous peoples in Taiwan and the Batanes Islands used C. frutescens fruits as condiments, medicines, ornaments, or for ritual uses; also, they used its leaves for soup. A complex of both green and yellowish-green types possessing ShDH-B was introduced from Indonesia into the Batanes Islands and Taiwan, and later only the type with yellowish-green immature fruit was introduced to the Ryukyu Islands under the bottleneck effect.  相似文献   

15.
The fungus Fusarium globosum was first isolated from maize in South Africa and subsequently from wheat in Japan. Here, multiple analyses revealed that, despite morphological similarities, South African maize and Japanese wheat isolates of the fungus exhibit multiple differences. An amplified fragment length polymorphism-based similarity index for the two groups of isolates was only 45%. Most maize isolates produced relatively high levels of fumonisins, whereas wheat isolates produced little or no fumonisins. The fumonisin biosynthetic gene FUM1 was detected in maize isolates by Southern blot analysis but not in the wheat isolates. In addition, most of the maize isolates produced sclerotia, and all of them produced large orange to dark purple sporodochia in carrot agar culture, whereas wheat isolates did not produce either structure. In contrast, individual isolates from both maize and wheat carried markers for both mating type idiomorphs, which indicates that the fungus may be homothallic. However, a sexual stage of F. globosum was not formed under standard self-fertilization conditions developed for other homothallic species of Fusarium. The inability to produce the sexual stage is consistent with the high similarity of 87–100% and G ST index of 1.72 for the maize isolates, which suggests that these isolates are undergoing asexual but not sexual reproduction. Together, the results suggest that the South African maize and Japanese wheat isolates of F. globosum are distinct populations and could be different species.  相似文献   

16.
The extremely paedomorphic fish Schindleria (Gobioidei, Schindleriidae) is widely distributed in the Indo-Pacific Ocean, inhabiting coral reef lagoons. At least 21 cryptic species (Schindleria spp. 1–21) have been discovered around the Ryukyu and Ogasawara Islands. As a first step in extending the survey areas to the entire Indo-Pacific Ocean, the present study collected and examined Schindleria in Palau, located approximately 2,200 km from the Ryukyu Islands, for any cryptic diversity. Molecular phylogenetic analysis using partial mitochondrial 16S rRNA sequences of 71 specimens revealed four new cryptic species of Schindleria spp. 22–25 (Palau 1–4) in Palau.  相似文献   

17.
The mangrove cricket Apteronemobius asahinai is endemic to mangrove forest floors in China, Southeast Asia and the Ryukyu archipelago (Amamiohsima, Okinawa, Miyako, Ishigaki and Iriomote Islands) of Japan. We developed six polymorphic microsatellite markers for the mangrove cricket from genomic DNA libraries enriched for CA, GA, AAG and ATG motifs. The M13‐tailed primer method was used in the process of screening of amplification and polymorphism of primers. A total of 64 specimens from two populations (one from Okinawa and the other from Iriomote) were genotyped for allelic diversity. The average number of alleles per locus was 4.67 and 6.67 for Okinawa and Iriomote populations, respectively. A significant genetic differentiation was detected between the two populations (pairwise FST 0.2404). These polymorphic microsatellite loci will be useful in ongoing studies of the population genetic structure of the mangrove cricket including several populations in the Ryukyu archipelago.  相似文献   

18.
The genus Stephanus Jurine (in Panzer) is newly recorded from Japan and is represented by a new species. S. anijimensis sp. nov. from Anijima Island of the Ogasawara Islands. This species resembles S. tridentatus van Achterberg & Yang from the Oriental part of China, but can be distinguished by the combination of following characters: pronotum with a cavity under pronotal fold (cavity absent in S. tridentatus); hind femur comparatively slender, 4.8–5.1 times as long as maximum width (about 4.1 times in S. tridentatus); apical 0.5 of hind femur black or blackish‐brown (more or less yellowish in S. tridentatus). This new species was not found from other islands of the Ogasawara Islands, in which fauna is being severely endangered mainly due to predation by the introduced green anoles. Recently, it was introduced into Anijima Island in March 2013 and thus the extinction risk of this species is very high on this island.  相似文献   

19.
The phylogeography of the endangered tideland snail Batillaria zonalis in the Japanese and Ryukyu Islands was analyzed on the basis of nucleotide sequences of a mitochondrial gene for cytochrome oxidase c subunit I (COI). Extremely low genetic diversity was found in populations at both the northern and southern boundaries of the geographic distribution of this species in Japan, i.e., Sendai Bay and Iriomotejima Island, respectively, which might be attributed to the population bottleneck due to historical environmental variations and/or the recent foundation of populations in the marginal part of the inhabitable range. Most populations contained unique rare haplotypes, and significant genetic differentiation on the whole was shown, while no clear geographic genetic structure was detected between the Japanese and Ryukyu Islands or over the distribution area of B. zonalis in Japan, with the exception of significant genetic divergences in Ago Bay in the central part of Honshu and the southern part of Okinawajima Island.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号