首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyaluronic acid (HA) production in Streptococcus zooepidemicus competes for the carbon source along with biomass formation, lactate formation (via glycolysis) and pentose phosphate pathway (PPP). In our studies, increase in HA molecular weight was observed by redirecting the carbon flux towards HA biosynthesis pathway by partially inhibiting the glycolytic pathway. Batch bioreactor (1.2 L) studies showed that with the addition of 25 μM sodium iodoacetate, 5 g/L tryptophan and 10 g/L pyruvate, which are glycolytic inhibitors, HA molecular weight increased to 3.2, 3.2 and 3.1 MDa respectively compared to control run (2.4 MDa). Yield coefficients YHA/S and YLA/S showed inverse relationship, indicating competition for glucose between HA and lactic acid formation. Addition of 5 g/L glutamine along with 25 μM sodium iodoacetate also increased the HA concentration to 5.0 g/L from 2.0 g/L in control run. Metabolic flux analysis studies show that concentration and molecular weight of HA is increased by decreasing carbon flux towards glycolysis and PPP and increasing carbon flux towards HA precursor formation. It was observed that specific growth rate of the cells correlated positively to the specific HA production rate and negatively to the molecular weight of HA produced. Addition of antioxidant tannic acid also increased molecular weight to 3.0 MDa.  相似文献   

2.
The effects of agitation and aeration upon synthesis and molecular weight of the biopolymer gellan were systematically investigated in batch fermenter cultures of the bacterium, Sphingomonas paucimobilis. High aeration rates and vigorous agitation enhanced growth of S. paucimobilis. Although gellan formation occurred mainly in parallel with cell growth, the increase in cells able to synthesise gellan did not always lead to high gellan production. For example, at very high agitation rates (1000 rpm) growth was stimulated at the expense of biopolymer synthesis.Maximal gellan concentration was obtained at 500 rpm agitation and either 1 or 2 vvm aeration (12.3 and 12.4 g/l gellan, respectively). An increase in aeration (from 1 to 2 vvm) enhanced gellan synthesis only at low agitation rates (250 rpm). However, high aeration or dissolved oxygen was not necessary for high gellan synthesis, in fact oxygen limitation always preceded the phase of maximum gellan production and probably enhanced polysaccharide biosynthesis.Some gellan was formed even after glucose exhaustion. This was attributed to the intracellular accumulation of polyhydroxyalkanoates, (such as polyxydroxybutyrate) which were found in S. paucimobilis cells indicating the existence of a carbon storage system, which may contribute to gellan biosynthesis under glucose-limiting conditions.The autolysis of the culture, which occurred at the late stages of the process, seemed to be triggered mainly by limitations in mass (nutrient) transfer, due to the highly viscous process fluid that gradually develops. Rheological measurements generally gave a very good near real time estimate of maximum biopolymer concentration offering the possibility of improved process control relative to time consuming gravimetric assay methods.While mechanical depolymerisation of gellan did not occur, high aeration rates (2 vvm) led to production of gellan of low molecular weight (at either 250 or 500 rpm). This effect of aeration rate upon gellan molecular weight is reported here for the first time, and is important for the properties and applications of gellan. Mechanisms which may have led to this are discussed, but control of molecular weight of the biopolymers is clearly an area needing further research.  相似文献   

3.
Effects of Coix lacryma-jobi oil (CLO) addition on the mycelia growth and production of bioactive metabolites, such as triterpenoids, exopolysaccharide (EPS), and intracellular polysaccharide (IPS) in the submerged culture of Ganoderma lucidum were studied. The results showed that when a level of 2% CLO was added at the beginning of culture, the biomass, triterpenoids, EPS, and IPS productions reached a maximum of 10.71 g/L, 92.94 mg/L, 0.33 g/L, and 0.389 g/L, respectively, that were 3.34-fold, 2.76-fold, 2.2-fold, and 2.23-fold compared to that of control. Analysis of fermentation kinetics of G. lucidum suggested that glucose concentration in the culture of CLO-added group decreased more quickly as compared to the control group from day 2 to day 7 of fermentation process, while the triterpenoids and polysaccharides biosynthesis were promoted at the same culture period. However, the culture pH profile was not affected by the addition of CLO. There were no new components in the two types of polysaccharides obtained by the addition of CLO. Enzyme activities analysis indicated CLO or its fatty acids affected the synthesis level of phosphoglucose isomerase and α-phosphoglucomutase at different stage.  相似文献   

4.
Agrobacterium sp. was studied for the production of curdlan by conventional one-factor-at-a-time technique and response surface methodology. Factors such as initial pH, urea concentration, sucrose concentration having the greatest influence on the curdlan production were identified. By using response surface methodology (RSM), the curdlan production by Agrobacterium sp. was increased significantly by 109%, from 2.4 g/L to 5.02 g/L when the strain was cultivated in the optimal medium developed by RSM as compared to conventional one-factor-at-a-time technique. The curdlan production rate of 0.84 g/(L h) was obtained when Agrobacterium sp. was cultivated in the optimal medium developed by RSM, which was the highest curdlan production rate reported to date. The infrared (IR) and NMR spectra, the thermogram of DSC and pattern of X-ray diffraction for the curdlan of the present study were almost identical to those of the authentic curdlan sample (from Alcaligenes faecalis; Sigma). The purified curdlan was a linear polysaccharide composed of exclusively β-(1,3)-glucosidic linkages with the molecular weight of 160,000 Da by GPC. The crystalline melting point (Tm), glass transition temperature (Tg) and X-ray diffraction of the sample indicated low crystallinity in the structure.  相似文献   

5.
6.
Palm kernel press cake (PKC) is a residue of palm oil extraction, which was found to contain 48.5% of total carbohydrates of which 35.2% was mannan. The present study examines enzymatic hydrolysis of polysaccharides from the cell-wall material present in PKC to obtain monosaccharides that can be substrate in various fermentation processes such as ethanol production. The requirements for pretreatment were investigated and it was found that mannan in PKC was readily hydrolysed without any pretreatment. Several enzyme preparations were tested and Mannaway 25L was found as the best for releasing mannose, and Gammanase 1.0L worked well in degrading cellulose and mannose. Binary mixtures of enzymes were tested to increase the conversion, and 1:1 mixture of Mannaway 25L and Gammanase 1.0L showed good synergistic effect releasing 30% more mannose than the sum obtained using these enzymes individually. Using an enzyme loading of 2.3 mg protein/g PKC resulted in 63% of mannan in PKC being hydrolysed to mannose in 24 h, and in 96 h a total of 365 g mannose and glucose could be produced per kg PKC. Finally, PKC was hydrolysed and fermented using Saccharomyces cerevisiae with an ethanol yield of 125 g/kg PKC.  相似文献   

7.
Media components were optimized by statistical design for cell growth and PHB production of Methylobacterium extorquens DSMZ 1340. Four important components of growth media were optimized by central composite design. The growth increased from an OD = 1.35 for Choi medium as control to an OD = 2.15 for optimal medium. Then media components for PHB production were optimized. Optimization of five important factors was conducted by response surface method. The optimal composition of PHB production medium was found to be at 7.8 (g/L) Na2HPO4 · 12H2O, and surprisingly at zero concentration of (NH4)2SO4, KH2PO4, MgSO4 and MnSO4. The PHB production was found to be 2.95 (g/L) at this medium. RSM results indicated that a deficiency of nitrogen and magnesium is crucial for PHB accumulation in this microorganism. Also, PHB production was carried out in a 5 L fermentor at the optimum condition which resulted in 9.5 g/L PHB and 15.4 g/L cell dry weight with 62.3% polymer content.  相似文献   

8.
The chemical carboxylmethylated polysaccharide (C-GLP), which derived from water-insoluble crude Ganoderma lucidum polysaccharide (GLP), was prepared. Water solubility, chemical characterization, and antioxidant activities in vitro of C-GLP were determined. The solubility of C-GLP in distilled water reached 100 mg/ml, which was much higher than the solubility of GLP. Chemical analysis indicated that C-GLP was composed of Glc:Man:Gal = 33.0:1.0:3.4 with a molecular weight of 1.8 × 106 Da and a carboxymethyl content of 11.07%. The signals of carboxymethyl were found in IR and 13C NMR spectra. Moreover, a high antioxidant activity of C-GLP was observed, especially in scavenging of hydroxyl radical (83.7% at 5 mg/ml) and hydrogen peroxide (51.6% at 10 mg/ml). This study indicates the effects of carboxymethylation on water-insoluble polysaccharide and explores a potential antioxidant in food industry and pharmaceuticals.  相似文献   

9.
《Process Biochemistry》2010,45(9):1517-1522
This study was to examine the effects of polysaccharides from a plant growth-promoting rhizobacterium (PGPR) Bacillus cereus on the growth and tanshinone production of Salvia miltiorrhiza hairy roots. A polysaccharide fraction designated BPS was isolated from the hot water extract of B. cereus cells by ethanol precipitation. BPS applied to the root culture at 100–400 mg l−1 a few days before the stationary growth phase stimulated the tanshinone accumulation of roots by about 7-fold (1.59 mg g−1 versus 0.19 mg g−1) and also notably promoted the root growth (15% increase in biomass). BPS was a polysaccharide–protein complex containing about 27% protein, which is essential for root growth promotion. BPS was separated by ultrafiltration into two molecular weight (MW) fractions, of which the high MW fraction (∼35.8 kDa) with higher protein content (∼31%) promoted the root growth while the lower MW fraction with lower protein content (∼17%) suppressed the growth. The results suggest that the polysaccharide portion of BPS was responsible for stimulating the tanshinone accumulation while the protein portion was responsible for promoting the hairy root growth. Polysaccharides from PGPR are potential sources of active elicitors and growth-promoting agents for plant roots in culture.  相似文献   

10.
《Process Biochemistry》2014,49(8):1238-1244
PH is an essential factor for acetone/butanol/ethanol (ABE) production using Clostridium spp. In this study, batch fermentations by Clostridium beijerinckii IB4 at various pH values ranging from 4.9 to 6.0 were examined. At pH 5.5, the ABE production was dominant and maximum ABE concentration of 24.6 g/L (15.7 g/L of butanol, 8.63 g/L of acetone and 0.32 g/L of ethanol) was obtained with the consumption of 60 g/L of glucose within 36 h. However, in the control (without pH control), an ABE concentration of 14.1 g/L (11.0 g/L of butanol, 3.01 g/L of acetone and 0.16 g/L of ethanol) was achieved with the consumption of 41 g/L of glucose within 40 h. A considerable improvement in the productivity of up to 93.8% was recorded at controlled pH in comparison to the process without pH control. To better understand the influence of pH on butanol production, the reducing power capability and NADH-dependent butanol dehydrogenase activity were investigated, both of which were significantly improved at pH 5.5. Thus, the pH control technique is a convenient and efficient method for high-intensity ABE production.  相似文献   

11.
A selective synthesis of dilauroyl maltose was developed using lipase-catalyzed condensation of lauric acid and maltose in two-solvent mixtures. The characteristics of different solvent combination were tested and it was found that the combination of acetone with n-hexane has a good selectivity for the synthesis of dilauroyl maltose. The highest diester conversion of 69% (i.e. 36.5 g/L of dilauroyl maltose) was obtained under optimal conditions: 25.65 g/L maltose, 60 g/L lauric acid, 60 g/L molecular sieve and 10 g/L lipase at 150 rpm and 50 °C for 72 h in 10 mL of mixed solvent of acetone:n-hexane (60:40, v/v).  相似文献   

12.
The fermentation process for arabitol production from glycerol was developed using a Debaryomyces hansenii strain recently selected from a broad screening. The high-producing strain produced arabitol as the only detectable polyol from glycerol. In this work, the pH, dissolved oxygen concentration (DO), inoculum size and magnesium concentration, and the nitrogen-to-phosphorus (N/P) ratio were systematically evaluated for effects on cell growth rate and arabitol productivity. Among those evaluated, the medium with N/P = 9, DO of 5% air saturation and pH 3.5 supported the highest arabitol production. Under these optimal conditions, arabitol production of 40 g/L was achieved in 5 days compared to earlier studies with 15 g/L arabitol in 5 days. Volumetric productivity and specific productivity were successfully improved from 0.13 to 0.33 g/L-h and 0.007 to 0.02 g/g-h respectively with arabitol yield of 55% from glycerol.  相似文献   

13.
《Process Biochemistry》2007,42(11):1537-1545
Crude glycerol is the primary by-product in the biodiesel industry, which is too costly to be purified into to higher quality products used in the health and cosmetics industries. This work investigated the potential of using the crude glycerol to produce docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the microalga Schizochytrium limacinum. The results showed that crude glycerol supported alga growth and DHA production, with 75–100 g/L concentration being the optimal range. Among other medium and environmental factors influencing DHA production, temperature, trace metal (PI) solution concentration, ammonium acetate, and NH4Cl had significant effects (P < 0.1). Their optimal values were determined 30 mL/L of PI, 0.04 g/L of NH4Cl, 1.0 g/L of ammonium acetate, and 19.2 °C. A highest DHA yield of 4.91 g/L with 22.1 g/L cell dry weight was obtained. The results suggested that biodiesel-derived crude glycerol is a promising feedstock for production of DHA from heterotrophic algal culture.  相似文献   

14.
《Process Biochemistry》2014,49(5):783-790
In the present work we describe an enzymatic production method to obtain β2-6 fructose oligosaccharides (levan-type FOS) through a sequential reaction in which a bacterial endolevanase is applied to levan produced from sucrose by bacterial levansucrases. A putative gene encoding an endolevanase, designated as LevBl, was identified through a bioinformatics search, isolated from a strain of Bacillus licheniformis IBt1 from our own collection and expressed in Escherichia coli. LevB1 showed a specific activity of 1.8 U/mg protein at 35 °C in 50 mM phosphate buffer pH 6.0. A first order kinetic behavior was found when up to 150 g/L of low molecular weight levan (8.3 kDa) was used as the substrate. The product profile was determined by HPAEC-PAD and consisted of levan-type FOS with a polymerization degree between 2 and 8, with levanbiose as the major product after long reaction times. Yields of 97% of levan-type FOS were obtained when 1.0 U/mL of LevB1 reacted with 100 g/L of levan produced by the levansucrase from Bacillus subtilis. Finally, it was observed that levan-type FOS are efficiently fermented by probiotic lactic acid bacteria.  相似文献   

15.
Sulfated polysaccharides (SPs) were identified in different portions of the thallus of Sargassum plagiophyllum C. Agardh, with TBO staining. SPs were extracted using a blade and purified by Q sepharose fast flow anion-exchange chromatography, resulting in SP fractions F1, F2 and F3, with molecular weights of 30, 35 and 20 kDa, respectively. An SP yield of 43.1% was obtained in F3, while F2 yielded a sulfate content of 21.9%. Furthermore, the in vitro anticancer and antioxidant activities of the polysaccharide fractions were evaluated. The F2 fraction showed higher anticancer activity against HepG2 and A549 cells than the other two fractions, with IC50 values of 600 μg/mL and 700 μg/mL, respectively. The normal breast epithelial cell line (HBL-100) exhibited IC50 concentrations of 1200 and 1400 μg/mL for crude sulfated polysaccharides (CSPs) and all SP fractions (F1–F3). These results indicated that the anticancer activity of F2 could be related to its sulfate content. However, the antioxidant activities of F1–F3 were low at their tested concentrations.  相似文献   

16.
Serratia marcescens C3 produces a natural red-pigment, prodigiosin, which exhibits immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. This work seeks to improve the production of prodigiosin by S. marcescens C3 using various strategies. Starch and peptone were identified as the optimized carbon and nitrogen sources for the production of prodigiosin, yielding a prodigiosin concentration of 2.3 g/L. This value was significantly increased to 6.7 g/L using a carbon/nitrogen ratio of 6/4 (starch/peptone = 16 g/L/10.67 g/L). To enhance prodigiosin production even further, a statistical experimental design methodology was utilized to optimize the composition of the culture medium that is utilized in the production of prodigiosin. Prodigiosin production of 7.07 g/L was achieved when the concentrations of two trace compounds, FeSO4·4H2O and MnSO4·4H2O, were optimized using the statistical experimental design methodology. Their optimal concentrations were 0.56 mM and 3.25 mM, respectively. Ultimately, the production of prodigiosin was increased from 2.3 g/L to 15.6 g/L, or by a factor of nearly seven by immobilizing microorganisms in 3% calcium alginate beads.  相似文献   

17.
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium sp. LS2 for continuous hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. Palm oil mill effluent (POME) was used as the substrate carbon source. The optimal amount of PEG-immobilized cells for anaerobic hydrogen production was 12% (w/v) in the UASB reactor. The UASB reactor containing immobilized cells was operated at varying hydraulic retention times (HRT) that ranged from 24 to 6 h at 3.3 g chemical oxygen demand (COD)/L/h organic loading rate (OLR), or at OLRs that ranged from 1.6 to 6.6 at 12 h HRT. The best volumetric hydrogen production rate of 336 mL H2/L/h (or 15.0 mmol/L/h) with a hydrogen yield of 0.35 L H2/g CODremoved was obtained at a HRT of 12 h and an OLR of 5.0 g COD/L/h. The average hydrogen content of biogas and COD reduction were 52% and 62%, respectively. The major soluble metabolites during hydrogen fermentation were butyric acid followed by acetic acid. It is concluded that the PEG-immobilized cell system developed in this work has great potential for continuous hydrogen production from real wastewater (POME) using the UASB reactor.  相似文献   

18.
《Process Biochemistry》2014,49(12):2203-2206
When the solvent extraction of the hydrolysate from barley straw was performed using ethyl acetate (EA), the logarithm of the partition coefficient (log P) of the phenols and furans for EA was found to be more than 1.00, which means that more than 90% of the inhibitors were removed from the hydrolysate layer. Cephalosporin C (CPC) was produced from the hydrolysate of dilute acid pretreatment (DAP) by Acremonium chrysogenum M35. A. chrysogenum M35 was cultured using the hydrolysate and the amount of CPC produced was found to be 10.35 g/L at 144 h. Also, the dry cell weight was about 101.5 g/L at 120 h. The utilization of the hydrolysate for CPC production was effective and the solvent extraction method for the removal of inhibitory substances could contribute to the biorefinery process.  相似文献   

19.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

20.
Recombinant Lactococcus lactis strains based on the P170 expression system were developed for hyaluronan (HA) production, by incorporating genes from the has operon of Streptococcus zooepidemicus and compared with nisin-inducible recombinant L. lactis strains containing the hasABC and hasABD constructs. It was found across all batch and fed-batch experimental studies that HA concentration and molecular weight (MW) were higher for the P170 expression systems than the corresponding NICE-based strains. The highest hyaluronan MW was obtained for all constructs in batch studies at 60 g/L initial glucose concentration, the highest being 2.94 MDa for the P170 strains with hasABC construct (L. lactis APJ3). In fed-batch studies with constant feed rate, the L. lactis APJ3 gave better HA yield (0.03 g/g) than the NICE-based strain. A higher hyaluronan MW was obtained for all strains in pulse fed-batch compared to constant feed experiments, the highest being 2.52 MDa for L. lactis APJ3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号