首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: This study examined the effects of different levels of acetylcholinesterase (AChE) inhibition on dopaminergic regulation of striatal acetylcholine (ACh) release as estimated by in vivo brain microdialysis. Systemic administration of d-amphetamine (2 or 10 mg/kg) increased the striatal output of ACh when the AChE inhibitor neostigmine (0.1 µM) was present in the perfusion fluid. In contrast, when the same experiments were conducted at 0.01 µM neostigmine, d-amphetamine failed to affect (2 mg/kg) or significantly decreased (10 mg/kg) striatal ACh output. The inhibitory action of the D2 receptor agonist quinpirole (0.2 mg/kg) was significantly greater at 0.01 µM than at 0.1 µM neostigmine. Similarly, there was a nonsignificant trend for the D2 antagonist raclopride (1 mg/kg) to stimulate ACh release to a greater extent at the low neostigmine concentration. In contrast, the stimulant effects of systemic administration of the D1 agonist A-77636 (1.46 mg/kg) on striatal ACh release were the same at the two neostigmine concentrations. These results demonstrate that the concentration of an AChE inhibitor in the perfusion solution can quantitatively and even qualitatively influence the manner in which dopaminergic agents regulate ACh overflow in the striatum. On comparing the present results with earlier reports concerning the effects of d-amphetamine on tissue concentrations of ACh, it is tentatively concluded that a low neostigmine concentration is the more physiologically relevant condition. Under such conditions, at moderate doses d-amphetamine does not appear to alter striatal ACh release, with this likely being due to the opposing actions of D1 and D2 receptors. Nevertheless, until the endogenous interstitial concentrations of striatal ACh can be measured by other methods, the physiological relevance of ACh microdialysis studies in the striatum will remain uncertain.  相似文献   

2.
Acetylcholinesterase (AChE) is a key enzyme in termination of fast cholinergic transmission. In brain, acetylcholine (ACh) is produced by cholinergic neurons and released in extracellular space where it is cleaved by AChE anchored by protein PRiMA. Recently, we showed that the lack of AChE in brain of PRiMA knock-out (KO) mouse increased ACh levels 200–300 times. The PRiMA KO mice adapt nearly completely by the reduction of muscarinic receptor (MR) density. Here we investigated changes in MR density, AChE, butyrylcholinesterase (BChE) activity in brain in order to determine developmental period responsible for such adaptation. Brains were studied at embryonal day 18.5 and postnatal days (pd) 0, 9, 30, 120, and 425. We found that the AChE activity in PRiMA KO mice remained very low at all studied ages while in wild type (WT) mice it gradually increased till pd120. BChE activity in WT mice gradually decreased until pd9 and then increased by pd120, it continually decreased in KO mice till pd30 and remained unchanged thereafter. MR number increased in WT mice till pd120 and then became stable. Similarly, MR increased in PRiMA KO mice till pd30 and then remained stable, but the maximal level reached is approximately 50% of WT mice. Therefore, we provide the evidence that adaptive changes in MR happen up to pd30. This is new phenomenon that could contribute to the explanation of survival and nearly unchanged phenotype of PRiMA KO mice.  相似文献   

3.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

4.
《Life sciences》1994,55(14):PL261-PL266
Vecuronium (100 ωM) but not pancuronium (100 ωM) increased the sensitivity of human isolated bronchial preparations (HBP) to exogenous acetylcholine (ACh). The pD2 values obtained from concentration-dependent contractions were : control, 4.59±0.29 vecuronium, 5.86±0.31. Vecuronium or pancuronium (100 ωM) significantly decreased (50%) the neostigmine contractions in HBP. In addition, vecuronium was more potent than pancuronium in preventing exogenous ACh degradation. These results suggest that vecuronium and pancuronium may have physiological effects in human airways by inhibiting both the tissue cholinesterases and muscarinic (M3) receptors.  相似文献   

5.

Background

In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M2R and M3R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca2+]i includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known.

Methods

To address this issue, we studied precision cut lung slices derived from FVB and M2R-KO and M3R-KO mice.

Results

In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M3R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M2R-KO mice. Quantitative RT-PCR revealed that the disruption of the M2R and M3R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways.

Conclusion

These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M2R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance.  相似文献   

6.
Abstract

The present study was conducted to localize and characterize the subtype(s) of muscarinic receptor involved in prostacyclin (PGI2) production elicited by the cholinergic transmitter acetylcholine (ACh) in various cell types in the rabbit heart. ACh increased PGI2 synthesis measured as 6-keto-PGF1α, in cultured coronary endothelial cells and freshly dissociated ventricular myocytes in a dose dependent manner but not in cultured coronary smooth muscle cells of rabbit heart. McN-A-343, a partially selective M1 muscarinic ACh receptor (mAChR) agonist, did not alter 6-keto-PGF1α synthesis in these cell types. ACh induced 6-keto-PGF1α synthesis in coronary endothelial cells and ventricular myocytes was not altered by a low concentration (10?8 M) of pirenzipine, an M1 mAChR antagonist but was reduced by a higher concentration (10?6 M). In coronary endothelial cells ACh induced 6-keto-PGF1α production was reduced by hexahydro-sila-difendial (HHSiD), an M3 mAChR antagonist, and in ventricular myocytes by both 11-(2-[(di-ethylamino) methyl]-1-piperidinyl]acetyl-5,11-dihydro-6-H-pyrido-[2,3-b]-benzodiazepine-6 one] (AF-DX 116), an M2 receptor antagonist, and HHSiD. The decrease by ACh of isoporterenol stimulated cAMP accumulation was minimized by AF-DX 116 but not by HHSiD or pirenzipine. Pertussis toxin treatment minimized ACh induced decrease in isoproterenol stimulated rise in cAMP and ATP release, but not ACh induced 6-keto-PGF1α synthesis. These data suggest that ACh stimulates prostacyclin production in coronary endothelial cells via M3 mAChR and in ventricular myocytes M2 and M3 mAChR. Moreover, ACh induced decrease in cAMP, but not the increase in 6-keto-PGF1α production, is mediated by pertussis toxin sensitive Gαi proteins in these cells.  相似文献   

7.
Abstract

In the isolated electrically stimulated vas deferens preparation the effect of exogenous acetylcholine (ACh) was studied. It was possible to differentiate two separate sites for the action of ACh. A postsynaptic effect (M1) which is revealed as a sudden decrease in the basal tension of the muscular twitch, antagonized competitively by atropine (pA2 = 8.44 ± 0.79), potentiated at a ratio of 10.24 by neostigmine, and not altered by hexamethonium, yohimbine, clonidine, theophylline or prazosin. Treatment with reserpine or 6-OH-DA induced a supersensitivity of this effect. The second action is a presycaptic effect (M2), which is manifested by a rapid increase in the muscular twitch, is dose-dependent to Ach, and is potentiated significantly by reserpine, neostigmine and clonidine. This latter effect was not modified by atropine, hexamethonium, yohimbine, prazosin or theophylline. The normal efficacy of ACh is 185 times greater in presynaptic over postsynaptic receptors. The increase in the twitch is not considered to be by the release of endogenous ACh or ATP. The evidence presented here indicates that the presynaptic effect of ACh (M2) is due to participation of α2 - adrenoceptors in enhancement of the release of norepinephrine (NE) from the nerve terminals.  相似文献   

8.
The M3 muscarinic acetylcholine (ACh) receptor (M3 mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the Gq family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M3 mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M3 receptors in pancreatic β -cells indicated that β -cell M3 mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through β -cell M3 mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M3 mAChR knockout mice showed that the absence of M3 receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M3 receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.  相似文献   

9.
Girard E  Bernard V  Minic J  Chatonnet A  Krejci E  Molgó J 《Life sciences》2007,80(24-25):2380-2385
At the neuromuscular junction (NMJ) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can hydrolyze acetylcholine (ACh). Released ACh quanta are known to diffuse rapidly across the narrow synaptic cleft and pairs of ACh molecules cooperate to open endplate channels. During their diffusion through the cleft, or after being released from muscle nicotinic ACh receptors (nAChRs), most ACh molecules are hydrolyzed by AChE highly concentrated at the NMJ. Advances in mouse genomics offered new approaches to assess the role of specific cholinesterases involved in synaptic transmission. AChE knockout mice (AChE-KO) provide a valuable tool for examining the complete abolition of AChE activity and the role of BChE. AChE-KO mice live to adulthood, and exhibit an increased sensitivity to BChE inhibitors, suggesting that BChE activity facilitated their survival and compensated for AChE function. Our results show that BChE is present at the endplate region of wild-type and AChE-KO mature muscles. The decay time constant of focally recorded miniature endplate currents was 1.04 +/- 0.06 ms in wild-type junctions and 5.4 ms +/- 0.3 ms in AChE-KO junctions, and remained unaffected by BChE-specific inhibitors, indicating that BChE is not limiting ACh duration on endplate nAChRs. Inhibition of BChE decreased evoked quantal ACh release in AChE-KO NMJs. This reduction in ACh release can explain the greatest sensitivity of AChE-KO mice to BChE inhibitors. BChE is known to be localized in perisynaptic Schwann cells, and our results strongly suggest that BChE's role at the NMJ is to protect nerve terminals from an excess of ACh.  相似文献   

10.
Mice deficient for acetylcholinesterase (AChE) have strongly increased extracellular levels of acetylcholine (ACh) in the dorsal hippocampus [Hartmann, J., Kiewert, C., Duysen, E.G., Lockridge, O., Greig, N.H., Klein, J., 2007. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 100, 1421-1429]. Using microdialysis, we found that increased ACh levels are accompanied by decreased levels of extracellular choline which were 1.60 microM in AChE-deficient mice and 4.36 microM in wild-type mice. Addition of choline (10 microM) to the perfusion fluid, while ineffective in wild-type animals, more than doubled extracellular ACh levels in AChE-deficient mice. High-affinity choline uptake (HACU), as measured ex vivo in corticohippocampal synaptosomes, was more than doubled in AChE-deficient mice. Inhibition of HACU by hemicholinium-3 (HC-3) in vivo reduced extracellular levels of ACh by 60% in wild-type mice but by more than 90% in AChE-deficient mice. Decreased ACh levels caused by infusion of HC-3 or tetrodotoxin (TTX) were accompanied by increased levels of free choline. Infusion of scopolamine (1 microM) caused a fivefold increase of ACh levels in wild-type animals but only a 50% increase in AChE-deficient mice. In conclusion, absence of AChE causes dynamic changes in the ratio of choline to ACh. High levels of extracellular ACh are accompanied by reduced levels of extracellular choline, and ACh release becomes strongly dependent on choline availability. Similar changes may take place in patients chronically exposed to AChE inhibitors.  相似文献   

11.
Because brain extracellular acetylcholine (ACh) levels are near detection limits in microdialysis samples, an acetylcholinesterase (AChE) inhibitor such as neostigmine is often added to microdialysis perfusates to increase ACh levels in the dialysate, a practice that raises concerns that the inhibitor might alter the results. Two experiments compared functional differences in ACh release with and without neostigmine. In the first experiment, 30-60% increases in extracellular ACh concentrations in the hippocampus were evident during food-rewarded T-maze training with 20-500 nm neostigmine in the perfusate but no increases were seen without neostigmine. In the second experiment, 78% increases in ACh release in the hippocampus were seen after injections of the GABA(A) receptor antagonist, bicuculline, into medial septum only if neostigmine (50 nm) was included in the perfusate. These findings suggest that, in the hippocampus, endogenous brain AChEs are very efficient at removing extracellular ACh, obscuring differences in ACh release in these experiments. Therefore, inclusion of AChE inhibitors in the microdialysis perfusate may be necessary under some conditions for observations of functional changes in release of ACh in the hippocampus.  相似文献   

12.
J. Neurochem. (2012) 122, 1065-1080. ABSTRACT: Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.  相似文献   

13.
The role of pannexin 1 in the release to the extracellular space of ATP/adenosine modulating the acetylcholine (ACh) secretion was studied in mouse diaphragm motor synapses. Using neuromuscular preparations obtained from wild-type and pannexin-1 knockout mice, the miniature endplate potential (MEPPs) and evoked endplate potentials (EPPs) were recorded in combination with pharmacological modulation of P2-type ATP receptors and A1-type adenosine receptors. Selective inhibition of A1 receptors with DPCPX or P2 receptors with PPADS increased quantal content of EPPs in wild-type mice. MRS 2211, selective antagonist of P2Y13 receptors, produced the same effect. Activation of receptors A1 or P2Y13 by their agonists (2-CADO and IDP, respectively) decreased the EPP quantal content. It means that the activity of endogenous ATP and adenosine is synergistic and directed to depression of the ACh release. ARL67156, an inhibitor of synaptic ecto-ATPases, which blocks the hydrolysis of ATP to adenosine and increases the level of ATP in the synaptic cleft, prolonged EPPs without changing their quantal content. In pannexin-1 knockout mice there were no changes in the EPP quantal content and in other parameters of synaptic transmission as compared to wildtype mice. However, downregulation of purinergic effects with antagonists of A1 or P2 receptors (DPCPX, PPADS, MRS 2211) did not change EPP quantal content and any other parameters of spontaneous or evoked ACh release in all cases. ARL67156 did not alter the temporal parameters of EPPs, either. Nevertheless, 2-CADO, the A1-type receptor agonist, decreased the EPP quantal content, while the agonist of P2Y13 receptors decreased the MEPP amplitude. Thus, in mice lacking pannexin 1, procedures revealing the presence and regulatory activity of synaptic ATP/adenosine did not change the parameters of synaptic transmission. The obtained data substantiate a mandatory role of pannexin 1 in the purinergic regulation of motor synapse activity by endogenous ATP/adenosine.  相似文献   

14.
Central cholinergic neurotransmission was studied in learning-impaired transgenic mice expressing human acetylcholinesterase (hAChE-Tg). Total catalytic activity of AChE was approximately twofold higher in synaptosomes from hippocampus, striatum and cortex of hAChE-Tg mice as compared with controls (FVB/N mice). Extracellular acetylcholine (ACh) levels in the hippocampus, monitored by microdialysis in the absence or presence of 10(-8)-10(-3) M neostigmine in the perfusion fluid, were indistinguishable in freely moving control and hAChE-Tg mice. Muscarinic receptor functions were unchanged as indicated by similar effects of scopolamine on ACh release and of carbachol on inositol phosphate formation. However, when the mice were anaesthetized with halothane (0.8 vol. %), hippocampal ACh reached significantly lower levels in AChE-Tg mice as compared with controls. Also, the high-affinity choline uptake (HACU) in hippocampal synaptosomes from awake hAChE-Tg mice was accelerated but was reduced by halothane anaesthesia. Moreover, hAChE-Tg mice displayed increased motor activity in novel but not in familiar environment and presented reduced anxiety in the elevated plus-maze test. Systemic application of a low dose of physostigmine (100 microgram/kg i.p.) normalized all of the enhanced parameters in hAChE-Tg mice: spontaneous motor activity, hippocampal ACh efflux and hippocampal HACU, attributing these parameters to the hypocholinergic state due to excessive AChE activity. We conclude that, in hAChE-Tg mice, hippocampal ACh release is up-regulated in response to external stimuli thereby facilitating cholinergic neurotransmission. Such compensatory phenomena most likely play important roles in counteracting functional deficits in mammals with central cholinergic dysfunctions.  相似文献   

15.
Fractional [3H]acetylcholine (ACh) release and regulation of release process by muscarinic receptors were studied in corpus striatum of young and aged rat brains. [3H] Quinuclidinyl benzilate (QNB) binding and carbachol stimulated phosphoinositide turnover, on the other hand, were compared in striatal, hippocampal and cortical tissues. High potassium (10 mM)-induced fractional [3H]ACh release from striatal slices was reduced by aging. Although inhibition of acetylcholinesterase with eserine (20 M) significantly decreased stimulation-induced fractional [3H]ACh release in two groups of rats, this inhibition slightly lessened with aging. Incubation of striatal slices with muscarinic antagonists reversed eserine-induced inhibition in fractional [3H]ACh release with a similar order of potency (atropine = 4-DAMP > AF-DX 116 > pirenzepine) in young and aged rat striatum, but age-induced difference in stimulated ACh release was not abolish by muscarinic antagonists. These results suggested that fractional [3H]ACh release from striatum of both age groups is modulated mainly by M3 muscarinic receptor subtype. Although both muscarinic receptor density and labeling of inositol lipids with [myo-3H]inositol decreased with aging, carbachol-stimulated [3H]myo inositol-1-fosfat (IP1) accumulation was found similar in striatal, cortical and hippocampal slices.  相似文献   

16.
Cholinergic muscarinic receptors, when stimulated by arecoline, can activate cytosolic phospholipase A2 (cPLA2) to release arachidonic acid (AA) from membrane phospholipid. This signal can be imaged in the brain in vivo using quantitative autoradiography following the intravenous injection of radiolabeled AA, as an increment in a regional brain AA incorporation coefficient k*. Arecoline increases k* significantly in brain regions having muscarinic M1,3,5 receptors in wild-type but not in cyclooxygenase (COX)-2 knockout mice. To further clarify the roles of COX enzymes in the AA signal, in this paper we imaged k* following arecoline (5 mg/kg i.p.) or saline in each of 81 brain regions of unanesthetized rats pretreated 6 h earlier with the non-selective COX inhibitor flurbiprofen (FB, 60 mg/kg s.c.) or with vehicle. Baseline values of k* were unaffected by FB treatment, which however reduced by 80% baseline brain concentrations of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), eicosanoids preferentially derived from AA via COX-2 and COX-1, respectively. In vehicle-pretreated rats, arecoline increased the brain PGE2 but not TXB2 concentration, as well as values for k* in 77 of the 81 brain regions. FB-pretreatment prevented these arecoline-provoked changes. These results and those reported in COX-2 knockout mice suggest that the AA released in brain following muscarinic receptor-mediated activation is lost via COX-2 to PGE2 but not via COX-1 to TXB2, and that increments in k* following arecoline largely represent replacement by unesterified plasma AA of this loss.  相似文献   

17.
Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs.  相似文献   

18.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

19.
20.
Opiates, like other addictive drugs, elevate forebrain dopamine levels and are thought to do so mainly by inhibiting GABA neurons near the ventral tegmental area (VTA), in turn leading to a disinhibition of dopamine neurons. However, cholinergic inputs from the laterodorsal (LDT) and pedunculopontine (PPT) tegmental nucleus to the VTA and substantia nigra (SN) importantly contribute, as either LDT or PPT lesions strongly attenuate morphine-induced forebrain dopamine elevations. Pharmacological blockade of muscarinic acetylcholine receptors in the VTA or SN has similar effects. M5 muscarinic receptors are the only muscarinic receptor subtype associated with VTA and SN dopamine neurons. Here we tested the contribution of M5 muscarinic receptors to morphine-induced dopamine elevations by measuring nucleus accumbens dopamine efflux in response to intra-VTA morphine infusion using in vivo chronoamperometry. Intra-VTA morphine increased nucleus accumbens dopamine efflux in urethane-anesthetized wildtype mice starting at 10 min after infusion. These increases were absent in M5 knockout mice and were similarly blocked by pre-treatment with VTA scopolamine in wildtype mice. Furthermore, in wildtype mice electrical stimulation of the PPT evoked an initial, short-lasting increase in striatal dopamine efflux, followed 5 min later by a second prolonged increase in dopamine efflux. In M5 knockout mice, or following systemic pre-treatment with scopolamine in wildtype mice, the prolonged increase in striatal dopamine efflux was absent. The time course of increased accumbal dopamine efflux in wildtype mice following VTA morphine was consistent with both the prolonged M5-mediated excitation of striatal dopamine efflux following PPT electrical stimulation and accumbal dopamine efflux following LDT electrical stimulation. Therefore, M5 receptors appear critical for prolonged PPT excitation of dopamine efflux and for dopamine efflux induced by intra-VTA morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号