首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shannon S  Flory SL  Reynolds H 《Oecologia》2012,169(1):235-243
Recent findings on feedback between plants and soil microbial communities have improved our understanding of mechanisms underlying the success and consequences of invasions. However, additional studies to test for feedback in the presence and absence of interspecific competition, which may alter the strength or direction of feedbacks, are needed. We tested for soil microbial feedback in communities of the invasive grass Microstegium vimineum and commonly co-occurring native plant species. To incorporate competitive context, we used a factorial design with three plant treatments (M. vimineum alone, M. vimineum with the native plant community, and the native community without M. vimineum) and two soil inoculum treatments (experimentally invaded and uninvaded soil). When competing with M. vimineum, native communities were 27% more productive in invaded than uninvaded soil. In contrast, soil type did not significantly affect M. vimineum biomass or fecundity. At the community level, these results indicate a net negative soil microbial feedback when native plants and M. vimineum are grown in competitive mixture, but not when they are grown separately. Since positive, not negative, feedback is associated with dominance and invasion, our findings do not support plant–soil feedback as a driver of invasion in this species. Our results do show that the importance of soil feedback can change with competitive context. Such context-dependency implies that soil feedback may change when competitive interactions between natives and invading species shift as invasions progress.  相似文献   

2.
Invasive plant species can alter belowground microbial communities. Simultaneously, the composition of soil microbial communities and the abundance of key microbes can influence invasive plant success. Such reciprocal effects may cause plant–microbe interactions to change rapidly during the course of biological invasions in ways that either inhibit or promote invasive species growth. Here we use a space-for-time substitution to illustrate how effects of soil microbial communities on the exotic legume Vicia villosa vary across uninvaded sites, recently invaded sites, and sites invaded by V. villosa for over a decade. We find that soil microorganisms from invaded areas increase V. villosa growth compared to sterilized soil or live soils collected from uninvaded sites, likely because mutualistic nitrogen-fixing rhizobia are not abundant in uninvaded areas. Notably, the benefits resulting from inoculation with live soils were higher for soils from recently invaded sites compared to older invasions, potentially indicating that over longer time scales, soil microbial communities change in ways that may reduce the success of exotic species. These findings suggest that short-term changes to soil microbial communities following invasion may facilitate exotic legume growth likely because of increases in the abundance of mutualistic rhizobia, but also indicate that longer term changes to soil microbial communities may reduce the growth benefits belowground microbial communities provide to exotic species. Our results highlight the changing nature of plant–microbe interactions during biological invasions and illustrate how altered biotic interactions could contribute to both the initial success and subsequent naturalization of invasive legume species.  相似文献   

3.
Invasive plant species affect a range of ecosystem processes but their impact on belowground carbon (C) pools is relatively unexplored. This is particularly true for grass invasions of forested ecosystems. Such invasions may alter both the quantity and quality of forest floor inputs. Dependent on both, two theories, ‘priming’ and ‘preferential substrate utilization’, suggest these changes may decrease, increase, or leave unchanged native plant‐derived soil C. Decreases are expected under ‘priming’ theory due to increased soil microbial activity. Under ‘preferential substrate utilization’, either an increase or no change is expected because the invasive plant's inputs are used by the microbial community instead of soil C. Here, we examine how Microstegium vimineum affects belowground C‐cycling in a southeastern US forest. Following predictions of priming theory, M. vimineum's presence is associated with decreases in native‐derived, C pools. For example, in September 2006 M. vimineum is associated with 24%, 34%, 36%, and 72% declines in total organic, particulate organic matter, mineralizable (a measure of microbially‐available C), and microbial biomass C, respectively. Soil C derived from M. vimineum does not compensate for these decreases, meaning that the sum of native‐ plus invasive‐derived C pools is smaller than native‐derived pools in uninvaded plots. Supporting our inferences that C‐cycling accelerates under invasion, the microbial community is more active per unit biomass: added 13C‐glucose is respired more rapidly in invaded plots. Our work suggests that this invader may accelerate C‐cycling in forest soils and deplete C stocks. The paucity of studies investigating impacts of grass invasion on C‐cycling in forests highlights the need to study further M. vimineum and other invasive grasses to assess their impacts on C sink strength and forest fertility.  相似文献   

4.
Exotic invasive plants can show strong plant–soil feedback responses, but little is known about time scales for significant changes in soil microbial communities to occur after invasion. Previous work has suggested that plant invasions can modify arbuscular mycorrhizal (AM) fungal community structure. However, there is a lack of understanding about how long it takes for these changes to develop. To test this we investigated temporal changes in AM fungal communities colonising the invasive plant Vincetoxicum rossicum (Apocynaceae). We hypothesised that AM fungal community structure would change in a particular direction during the invasion process. We collected soil from two sites with a long history of invasion by this plant, with each site having paired invaded and uninvaded plots. Soil from these plots was used in a glasshouse experiment to characterise AM fungal community structure in the roots of V. rossicum at different times throughout a simulated growing season. AM fungal community structure differed between invaded and uninvaded plots. However, contrasting with our hypothesis, AM fungal communities colonising V. rossicum growing in soil from uninvaded plots did not change towards those in plants growing in previously invaded soil. Our data suggest that changes to AM fungal communities in the presence of V. rossicum require longer than the first growing season after establishment to develop.  相似文献   

5.
Plant–soil interactions have been proposed as a causative mechanism explaining how invasive plant species impact ecosystem processes. We evaluate whether an invasive plant influences plant and soil-microbe acquisition of nitrogen to elucidate the mechanistic pathways by which invaders might alter N availability. Using a 15N tracer, we quantify differences in nitrogen uptake and allocation in communities with and without Microstegium vimineum, a shade-tolerant, C4 grass that is rapidly invading the understories of eastern US deciduous forests. We further investigate if plants or the microbial biomass exhibit preferences for certain nitrogen forms (glycine, nitrate, and ammonium) to gain insight into nitrogen partitioning in invaded communities. Understory native plants and M. vimineum took up similar amounts of added nitrogen but allocated it differently, with native plants allocating primarily to roots and M. vimineum allocating most nitrogen to shoots. Plant nitrogen uptake was higher in invaded communities due primarily to the increase in understory biomass when M. vimineum was present, but for the microbial biomass, nitrogen uptake did not vary with invasion status. This translated to a significant reduction (P < 0.001) in the ratio of microbial biomass to plant biomass nitrogen uptake, which suggests that, although the demand for nitrogen has intensified, microbes continue to be effective nitrogen competitors. The microbial biomass exhibited a strong preference for ammonium over glycine and nitrate, regardless of invasion status. By comparison, native plants showed no nitrogen preferences and M. vimineum preferred inorganic nitrogen species. We interpret our findings as evidence that invasion by M. vimineum leads to changes in the partitioning of nitrogen above and belowground in forest understories, and to decreases in the microbial biomass, but it does not affect the outcome of plant–microbe–nitrogen interactions, possibly due to functional shifts in the microbial community as a result of invasion.  相似文献   

6.
Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.  相似文献   

7.
Plant invasions are known to have negative impacts on native plant communities, yet their influence on higher trophic levels has not been well documented. Past studies investigating the effects of invasive plants on herbivores and carnivores have been largely observational in nature and thus lack the ability to tease apart whether differences are a cause or consequence of the invasion. In addition, understanding how plant traits and plant species compositions change in invaded habitats may increase our ability to predict when and where invasive plants will have effects that cascade to animals. To assess effects on arthropods, we experimentally introduced a non‐native plant (Microstegium vimineum, Japanese stiltgrass) in a community re‐assembly experiment. We also investigated possible mechanisms through which the invader could affect associated arthropods, including changes in native plant species richness, above‐ground plant biomass, light availability and vegetation height. In experimentally invaded plots, arthropod abundance was reduced by 39%, and species richness declined by 19%. Carnivores experienced greater reductions in abundance than herbivores (61% vs 31% reduction). Arthropod composition significantly diverged between experimentally invaded and control plots, and particular species belonging to the abundant families Aphididae (aphids), Formicidae (ants) and Phalacridae (shining flower beetles) contributed the most to compositional differences. Among the mechanisms we investigated, only the reduction in native plant species richness caused by invasion was strongly correlated with total arthropod abundance and richness. In sum, our results demonstrate negative impacts of M. vimineum invasion on higher trophic levels and suggest that these effects occur, in part, indirectly through invader‐mediated reductions in the richness of the native plant community. The particularly strong response of carnivores suggests that plant invasion could reduce top–down control of herbivorous species for native plants.  相似文献   

8.
Because microorganisms have different abilities to utilize nitrogen (N) through various assimilatory and dissimilatory pathways, microbial composition and diversity likely influence N cycling in an ecosystem. Terrestrial plant litter decomposition is often limited by N availability; however, little is known about the microorganisms involved in litter N cycling. In this study, we used metagenomics to characterize the potential N utilization of microbial communities in grassland plant litter. The frequencies of sequences associated with eight N cycling pathways differed by several orders of magnitude. Within a pathway, the distributions of these sequences among bacterial orders differed greatly. Many orders within the Actinobacteria and Proteobacteria appeared to be N cycling generalists, carrying genes from most (five or six) of the pathways. In contrast, orders from the Bacteroidetes were more specialized and carried genes for fewer (two or three) pathways. We also investigated how the abundance and composition of microbial N cycling genes differed over time and in response to two global change manipulations (drought and N addition). For many pathways, the abundance and composition of N cycling taxa differed over time, apparently reflecting precipitation patterns. In contrast to temporal variability, simulated global change had minor effects on N cycling potential. Overall, this study provides a blueprint for the genetic potential of N cycle processes in plant litter and a baseline for comparisons to other ecosystems.  相似文献   

9.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

10.
Soil nitrogen (N) is an important component in maintaining ecosystem stability, and the introduction of non-native plants can alter N cycling by changing litter quality and quantity, nutrient uptake patterns, and soil food webs. Our goal was to determine the effects of Bromus tectorum (C3) invasion on soil microbial N cycling in adjacent non-invaded and invaded C3 and C4 native arid grasslands. We monitored resin-extractable N, plant and soil δ13C and δ15N, gross rates of inorganic N mineralization and consumption, and the quantity and isotopic composition of microbial phospholipid biomarkers. In invaded C3 communities, labile soil organic N and gross and net rates of soil N transformations increased, indicating an increase in overall microbial N cycling. In invaded C4 communities labile soil N stayed constant, but gross N flux rates increased. The δ13C of phospholipid biomarkers in invaded C4 communities showed that some portion of the soil bacterial population preferentially decomposed invader C3-derived litter over that from the native C4 species. Invasion in C4 grasslands also significantly decreased the proportion of fungal to bacterial phospholipid biomarkers. Different processes are occurring in response to B. tectorum invasion in each of these two native grasslands that: 1) alter the size of soil N pools, and/or 2) the activity of the microbial community. Both processes provide mechanisms for altering long-term N dynamics in these ecosystems and highlight how multiple mechanisms can lead to similar effects on ecosystem function, which may be important for the construction of future biogeochemical process models.  相似文献   

11.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   

12.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

13.
Exotic plant invasions and chronic high levels of herbivory are two of the major biotic stressors impacting temperate forest ecosystems in eastern North America, and the two problems are often linked. We used a 4-ha deer exclosure maintained since 1991 to examine the influence of a generalist herbivore, white-tailed deer (Odocoileus virginianus), on the abundance of four exotic invasive (Rosa multiflora, Berberis thunbergii, Rubus phoenicolasius and Microstegium vimineum) and one native (Cynoglossum virginianum) plant species, within a 25.6-ha mature temperate forest dynamics plot in Virginia, USA. We identified significant predictors of the abundance of each focal species using generalized linear models incorporating 10 environmental and landscape variables. After controlling for those predictors, we applied our models to a 4-ha deer exclusion site and a 4-ha reference site, both embedded within the larger plot, to test the role of deer on the abundance of the focal species. Slope, edge effects and soil pH were the most frequent predictors of the abundance of the focal species on the larger plot. The abundance of C. virginianum, known to be deer-dispersed, was significantly lower in the exclosure. Similar patterns were detected for B. thunbergii, R. phoenicolasius and M. vimineum, whereas R. multiflora was more abundant within the exclosure. Our results indicate that chronic high deer density facilitates increased abundances of several exotic invasive plant species, with the notable exception of R. multiflora. We infer that the invasion of many exotic plant species that are browse-tolerant to white-tailed deer could be limited by reducing deer populations.  相似文献   

14.
Shade-tolerant non-native invasive plant species may make deep incursions into natural plant communities, but detecting such species is challenging because occurrences are often sparse. We developed Bayesian models of the distribution of Microstegium vimineum in natural plant communities of the southern Blue Ridge Mountains, USA to address three objectives: (1) to assess local and landscape factors that influence the probability of presence of M. vimineum; (2) to quantify the spatial covariance error structure in occurrence that was not accounted for by the environmental variables; and (3) to synthesize our results with previous findings to make inference on the spatial attributes of the invasion process. Natural plant communities surrounded by areas with high human activity and low forest cover were at highest risk of M. vimineum invasion. The probability of M. vimineum presence also increased with increasing native species richness and soil pH, and decreasing basal area of ericaceous shrubs. After accounting for environmental covariates, evaluation of the spatial covariance error structure revealed that M. vimineum is invading the landscape by a hierarchical process. Infrequent long-distance dispersal events result in new nascent sub-populations that then spread via intermediate- and short-distance dispersal, resulting in 3-km spatial aggregation pattern of sub-populations. Containment or minimisation of its impact on native plant communities will be contingent on understanding how M. vimineum can be prevented from colonizing new suitable habitats. The hierarchical invasion process proposed here provides a framework to organise and focus research and management efforts.  相似文献   

15.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

16.
To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon–Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon–Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.  相似文献   

17.
Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.  相似文献   

18.
Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens.  相似文献   

19.

Background and aims

Carpobrotus spp. are amongst the most impactful and widespread plant invaders of Mediterranean habitats. Despite the negative ecological impacts on soil and vegetation that have been documented, information is still limited about the effect by Carpobrotus on soil microbial communities. We aimed to assess the changes in the floristic, soil and microbial parameters following the invasion by Carpobrotus cfr. acinaciformis within an insular Mediterranean ecosystem.

Methods

Within three study areas a paired-site approach, comparing an invaded vs. a non-invaded plot, was established. Within each plot biodiversity indexes, C and N soil content, pH and microbial biomass and structure (bacterial and fungal) were assessed.

Results

Invaded plots showed a decrease of α-species richness and diversity. The least represented plant species in invaded plots were those related to grassland habitats. In all invaded soils, a significant increase of carbon and nitrogen content and a significant decrease of pH were registered. Carpobrotus significantly increased bacterial and fungal biomass and altered soil microbial structure, particularly favoring fungal growth.

Conclusions

Carpobrotus may deeply impact edaphic properties and microbial communities and, in turn, these strong modifications probably increase its invasive potential and its ability to overcome native species, by preventing their natural regeneration.
  相似文献   

20.
Invasive plants dramatically shift the structure of native wetland communities. However, less is known about how they affect belowground soil properties, and how those effects can vary depending on time since invasion. We hypothesized that invasion of a wetland by a widespread invasive plant (Typha × glauca) would result in changes in soil nutrients, denitrification, and bacterial communities, and that these effects would increase with time since invasion. We tested these hypotheses by sampling Typha-invaded sites of different ages (~40, 20, and 13 years), a Typha-free, native vegetation site, and a restored site (previously invaded ~30–40 years ago) but that had Typha return within 2 years of the restoration. At each site, we measured Typha stem density, plant species richness, soil nutrients, denitrification rates, and the abundance and composition of bacterial denitrifier communities. All Typha-dominated sites had the least plant species richness regardless of time since invasion. Additionally, sites that were invaded the longest exhibited significantly higher concentrations of soil organic matter, nitrate, and ammonium than the native site. In contrast, denitrification was higher in sites invaded more recently. Denitrifier diversity for the nirS gene was also significantly different, with highest nirS diversity in sites invaded the longest. Interestingly, the denitrifier communities within the restored site were most similar to the ones in T. × glauca sites, suggesting a legacy effect. Our study suggests this invader can alter important ecosystem properties, such as native species richness, nutrient pools, and transformations, as well as bacterial community composition depending on time since invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号