首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The influence of increased nitrate concentration—14 (control) and 140 mmol L−1 (T)—in hydroponic culture on ammonia assimilation in cucumber (Cucumis sativus L. cv. Xintaimici) seedlings was investigated. The results showed that NH3 accumulation in the roots and leaves of T seedlings increased significantly, indicating that NH3 toxicity might be involved in nitrate stress. Under control conditions, GS and GOGAT activity were much higher in the leaves than in the roots, whereas GDH activity was much higher in the roots than in the leaves. Correlation analysis showed that NH3 concentration had a strong negative linear relationship with GDH activity in the roots but had a strong negative linear relationship with GS and GOGAT activity in the leaves. These results indicate that NH3 might be assimilated primarily via GDH reaction in the roots and via GS/GOGAT cycle in the leaves. Short-term nitrate stress resulted in the increase of GS and GOGAT activity in the roots and GDH activity in the leaves of T seedlings, indicating possible shifts in ammonia assimilation from the normal GDH pathway to GS/GOGAT pathway in the roots and from the normal GS/GOGAT pathway to the GDH pathway in the leaves under nitrate stress, but with the increase of treatment time, GS, GOGAT, and GDH activity in the roots and leaves of T seedlings decreased possibly due to low water potential and NH3 toxicity.  相似文献   

2.
NaCl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用   总被引:19,自引:1,他引:18  
在NaCl的胁迫下,水稻幼苗根和叶的谷氨酸合酶和谷氨酸脱氢酶的活性随着营养液中的NaCl浓度的升高而降低;游离NH4^+在叶中积累,在根中未见明显变化。与根相比,叶对NaCl的胁迫作用更为敏感。叶的NADH-GOGAT和NADH-GDH活性在NaCl胁迫降低的程度明显大于根。无论是否有NaCl存在,根的NADH-GDH活性明显高于叶。GS/GDH比值分析提示,对对照下,根中的NH4^存在,根的NA  相似文献   

3.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

4.
Productivity of cereal crops is restricted in saline soils but may be improved by nitrogen nutrition. In this study, the effect of ionic nitrogen form on growth, mineral content, protein content and ammonium assimilation enzyme activities of barley (Hordeum vulgare cv. Alexis L.) irrigated with saline water, was determined. Leaf and tiller number as well as plant fresh and dry weights declined under salinity (120 mM NaCl). In non-saline conditions, growth parameters were increased by application of NH(4)(+)/NO(3)(-) (25:75) compared to NO(3)(-) alone. Under saline conditions, application of NH(4)(+)/NO(3)(-) led to a reduction of the detrimental effects of salt on growth. Differences in growth between the two nitrogen regimes were not due to differences in photosynthesis. The NH(4)(+)/NO(3)(-) regime led to an increase in total N in control and saline treatments, but did not cause a large decrease in plant Na(+) content under salinity. Activities of GS (EC 6.3.1.2), GOGAT (EC 1.4.1.14), PEPC (EC 4.1.1.31) and AAT (EC 2.6.1.1) increased with salinity in roots, whereas there was decreased activity of the alternative ammonium assimilation enzyme GDH (EC 1.4.1.2). The most striking effect of nitrogen regime was observed on GDH whose salinity-induced decrease in activity was reduced from 34% with NO(3)(-) alone to only 14% with the mixed regime. The results suggest that the detrimental effects of salinity can be reduced by partial substitution of NO(3)(-) with NH(4)(+) and that this is due to the lower energy cost of N assimilation with NH(4)(+) as opposed to NO(3)(-) nutrition.  相似文献   

5.
Seeds of Phaseolus vulgaris L. cv. White Kidney were germinated and grown either in a nitrogen-free or in an ammonia-supplied medium. The changes in the soluble protein concentration and in the levels of glutamine synthetase (GS, EC 6.3.1.2), NADH–glutamate synthase (NADH-GOGAT, EC 1.4.1.14), ferredoxin-glutamate synthase (Fd-GOGAT, EC 1.4.7.1) and glutamate dehydrogenase (GDH, EC 1.4.1.2), both NADH- and NAD+-dependent, were examined in cotyledons and roots during the first 10 days after sowing. Soluble protein declined rapidly in the cotyledons and increased slightly in the roots. GS activity was initially high both in cotyledons and roots but subsequently decreased during seedling growth. Exogenous ammonia hardly affected GS activity. High levels of NADH-GOGAT were present both in cotyledons and roots during the first days of germination. The activity then gradually declined in both organs. In contrast, Fd-GOGAT in cotyledons was initially low and progressively increased with seedling development. In roots, the levels of Fd-GOGAT were higher in young than in old seedlings. Supply of ammonia to the seedlings increased the levels of NADH-GOGAT and Fd-GOGAT both in cotyledons and roots. NADH-GDH (aminating) activity gradually increased during germination. In contrast, the levels of NAD+-GDH (deaminating) activity were highest during the first days of germination. Exogenous ammonia did not significantly affect the activities of GDH.  相似文献   

6.
Jack pine (Pinus banksiana Lamb.) seedlings were inoculated with either one of the ectomycorrhizal (ECM) fungi, Laccaria bicolor (Maire) Orton or Pisolithus tinctorius (Pers.) Coker and Couch, and grown for 16 weeks in a growth chamber along with non-ECM controls. Five enzymes involved with the assimilation of nitrogen or the synthesis of amino acids were measured in the 3 jack pine root systems as well as in the pure fungal cultures. Pisolithus tinctorius in pure culture had no detectable activity of nitrate reductase (NR. EC 1.6.6.1), glutamate dehydrogenase (GDH. EC 1.4.1.2), glutamate decarboxylase (GDCO. EC 4.1.1.15) or glutamate oxoglutarate aminotransferase (GOGAT, EC 1.4.1.13) but did have some glutamine synthetase (GS, EC 6.3.1.2) activity. Laccaria bicolor in pure culture had no NR activity, small levels of GDCO activity, and high GS, GDH and GOGAT activity. The high levels of enzymatic activity present in L. bicolor indicate that it may play a greater role in the nitrogen metabolism of its host plant than P. tinctorius. ECM infection clearly altered the enzymatic activity in jack pine roots but the nature of these changes depended on the fungal associate. Non-ECM root systems had higher specific activities than ECM root systems for NR, GS, GDH and GDCO but GOGAT activites were the same for both the ECM and non-ECM roots. Root systems infected with L. bicolor had significantly greater NR and GDCO activity than those infected with P. tinctorius. Differences in the GS activity of the two fungi in pure culture corresponded to the GS activity of jack pine roots in symbiotic association with these fungi. While the free amino acid profiles in roots were significantly affected by ECM infection, the profile of free amino acids exported to the stem was the same for all treatments. High asparagine and low glutamine in roots infected with P. tinctorius indicates that asparagine synthetase (EC x.x.x.x) activity should be higher within this symbiotic association than in the L. bicolor association or in the non-mycorrhizal roots.  相似文献   

7.
Ammonium assimilation into glutamine and glutamate is vital for plant growth as these are precursors for almost all nitrogenous compounds. Ammonium can be assimilated onto nitrogenous organic compounds by the concerted action of two enzymes that compose the glutamine synthetase (GS, EC 6.3.1.2) – glutamate synthase (Fd-GOGAT, EC 1.4.7.1; NADH–GOGAT, EC 1.4.1.14) cycle. Ammonium may also be directly incorporated into glutamate by the glutamate dehydrogenase (GDH, EC 1.4.1.2) aminating reaction. However, as GDH reversibly deaminates glutamate, its physiological role in vivo remains controversial. Potato has been classified as moderately tolerant to salinity. Potato GS is encoded by a small multigene family which is differentially regulated in an organ and age-dependent way. In this study, the effect of increasing concentrations of salinity in the soil in GS activity and gene-specific mRNA accumulation levels were studied on potato leaves and roots, as well as the biochemical parameters protein, chlorophyll, lipid peroxidation and proline levels, in order to evaluate the severity of the imposed stress. The data obtained suggests that when potato plants are subjected to salt stress, increased ammonium assimilation occurs in roots, due to an increased GS accumulation, along with a decreased assimilation in leaves. Regarding GS gene-specific mRNA accumulation, an organ-dependent response was also observed that contributes for the detected alteration in the ammonium assimilatory metabolism. This response may be a key feature for future genetic manipulations in order to increase crop productivity in salty soils. The possible contribution of GDH for ammonia assimilation was also investigated.  相似文献   

8.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

9.
Ammonium assimilation enzymes from several strains of ectendo- and ectomycorrhizal fungi were assayed after three weeks culture on a buffered synthetic medium containing ammonium as sole nitrogen source. Activity of NADP-dependent glutamate dehydrogenase (GDH, EC 1.4.1.4) of ectomycorrhizal strains was very low despite excellent mycelial growth. Only ectendomycorrhizal fungus MrgX isolated from roots of Pinus sylvestris showed high GDH activity. Similar results were obtained when the enzyme extracts were subjected to starch gel electrophoresis. Growth of the fungi, except ectendomycorrhizal MrgX, was arrested when inhibitors of glutamine synthetase (GS, EC 6.3.1.2) or glutamate synthase (GOGAT. EC 1.4.7.1) (methionine sulphoximine or albizine, respectively) were included in the culture medium. Glutamine synthetase activity was found in all fungi tested. The results suggest that the GS pathway for ammonium assimilation is potentially operative in ectomycorrhizal fungi and imply only a minor role for GDH in ammonium assimilation by the studied ectomycorrhizal symbionts of pine. Some physiological and ecological implications of these results are discussed.  相似文献   

10.
为研究纯化腐植酸(PHA)在不同水平氮胁迫下对黄瓜植株生长和氮代谢的影响,探明PHA对逆境胁迫的缓解作用机制,采用水培方式,选用新泰密刺为供试品种,以正常氮水平(11 mmol·L-1 NO3-)为对照,进行低氮(1.0 mmol·L-1 NO3-)和高氮(101 mmol·L-1 NO3-)胁迫处理,研究纯化腐植酸对氮胁迫下黄瓜幼苗生长和氮代谢的影响.结果表明: 低氮和高氮胁迫均抑制了黄瓜幼苗生长,株高、茎粗、叶面积、干物质积累量均低于正常氮水平处理.施用纯化腐植酸促进了正常氮水平及低氮胁迫下黄瓜干物质积累,在高氮胁迫下差异不显著.PHA影响了黄瓜幼苗NO3-的吸收,呈低氮下促进、高氮下抑制吸收的趋势;PHA显著降低了低氮、高氮胁迫下根系和叶片中的铵态氮含量;与正常氮水平相比,低氮、高氮胁迫下根系和叶片的硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)活性及根系中亚硝酸还原酶(NiR)活性均显著降低,PHA不同程度地提高了NR、NiR、GS、GOGAT、GDH活性,还提高了根系和叶片中游离氨基酸、可溶性蛋白的含量.综上,添加PHA缓解了氮胁迫对黄瓜幼苗生长的抑制作用.  相似文献   

11.
Glutamate dehydrogenase (GDH E.C. 1.4.1.2.4), glutamine synthetase (GS E.C. 6.3.1.2) and glutamate synthase (glutamine oxoglutarate amino transferase, GOGAT E.C. 2.6.1.53) activities, protein and organic nitrogen contents and growth of roots and shoots of maize seedlings raised in dark at 25±2°C in half strength Hoagland’s solution containing different ammonium salts as source of nitrogen, were determined to assess the contribution of alternate pathways in ammonium assimilation. Ammonium nitrate or in some cases ammonium chloride appeared to be the best source for both root and shoot growth and for increase in protein, total nitrogen and the enzymes of ammonium assimilation. In roots, NH4-nitrogen appeared to be assimilated by both GDH as well as GS-GOGAT pathways specially in the dark grown seedlings, while in shoots it was primarily by GS-GOGAT pathway.  相似文献   

12.
The effects of NaCl on changes in ammonium level and enzyme activities of ammonium assimilation in roots growth of rice (Oryza sativa L.) seedlings were investigated. NaCl was effective in inhibiting root growth and stimulated the accumulation of ammonium in roots. Accumulation of ammonium in roots preceded inhibition of root growth caused by NaCl. Both effects caused by NaCl are reversible. Exogenous ammonium chloride and methionine sulfoximine (MSO), which caused ammonium accumulation in roots, inhibited root growth of rice seedlings. NaCl decreased glutamine synthetase and glutamate synthase activities in roots, but increased glutamate dehydrogenase activity. The growth inhibition of roots by NaCl or MSO could be reversed by the addition of L-glutamic acid or L-glutamine. The current results suggest that disturbance of ammonium assimilation in roots may be involved in regulating root growth reduction caused by NaCl.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

13.
The influence of 50 and 100 μM Ni on the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) was studied in the wheat roots. Root fresh weight, tissue Ni, nitrate, ammonium, glutamate and protein concentrations were also determined. Exposure to Ni resulted in a marked reduction in fresh weight of the roots accompanied by a rapid accumulation of Ni in these organs. Both nitrate and ammonium contents in the root tissue were considerably enhanced by Ni stress. While protein content was not significantly influenced by Ni application, glutamate concentration was slightly reduced on the first day after treatment with the higher Ni dose. Treatment of the wheat seedlings with 100 μM Ni led to a decrease in NR activity; however, it did not alter the activation state of this enzyme. Decline in NiR activity observed after application of 100 μM Ni was more pronounced than that in NR. The activities of GS and NADH-GOGAT also showed substantial decreases in response to Ni stress with the latter being more susceptible to this metal. Starting from the fourth day, both aminating and deaminating GDH activities in the roots of the seedlings supplemented with Ni were lower in comparison to the control. While the activity of AspAT remained unaltered after Ni application that of AlaAT showed a considerable enhancement. The results indicate that exposure of the wheat seedlings to Ni resulted in a general depression of nitrogen assimilation in the roots. Increase in the glutamate-producing activity of AlaAT may suggest its involvement in supplying the wheat roots with this amino acid under Ni stress.  相似文献   

14.
To investigate the role of stress in nitrogen management in plants, the effect of pathogen attack, elicitors, and phytohormone application on the expression of the two senescence-related markers GS1 (cytosolic glutamine synthetase EC 6.3.1.2) and GDH (glutamate dehydrogenase, EC 1.4.1.2) involved in nitrogen mobilization in senescing leaves of tobacco (Nicotiana tabacum L.) plants, was studied. The expression of genes involved in primary nitrogen assimilation such as GS2 (chloroplastic glutamine synthetase) and Nia (nitrate reductase, EC 1.6.1.1) was also analysed. The Glubas gene, coding a beta-1,3-glucanase, was used as a plant-defence gene control. As during natural senescence, the expression of GS2 and Nia was repressed under almost all stress conditions. By contrast, GS1 and GDH mRNA accumulation was increased. However, GS1 and GDH showed differential patterns of expression depending on the stress applied. The expression of GS1 appeared more selective than GDH. Results indicate that the GDH and GS1 genes involved in leaf senescence are also a component of the plant defence response during plant-pathogen interaction. The links between natural plant senescence and stress-induced senescence are discussed, as well as the potential role of GS1 and GDH in a metabolic safeguard process.  相似文献   

15.
Glutamate dehydrogenase (GDH, EC 1.4.1.2–4) and glutamine synthetase (GS, EC 6.3.1.2) activities as well as protein content and dry matter in developing kernels of winter Triticale were determined. The relatively low level of GS activity compared to high level of NAD(P)H-dependent GDH activity during intensive filling of grains with storage compounds may indicate the participation of GDH in reductive amination of 2-oxoglutarate. The amination activity of this enzyme in all grain development phases exceeded the deaminating activity several fold. Moreover, the dynamics in the change of NAD(P)H-GDH and NAD(P)+-GDH activities were analysed in various tissues of the developing grains. The high amination activity of the enzyme in the seed coat, where the intensive protein synthesis occurs would also be an indication of the anabolic function of this enzyme.  相似文献   

16.
17.
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100 mM NaCl for 3 d. The biomass and NO3 uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3 uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings.  相似文献   

18.
P. A. Edge  T. R. Ricketts 《Planta》1978,138(2):123-125
Platymonas striata Butcher displays significant levels of glutamate synthase (GS) (EC 2.6.1.53) and glutamine synthetase (GOGAT) (EC 6.3.1.2.), but very low levels of glutamate dehydrogenase (GDH) (EC 1.4.1.4). This suggests that the GS/GOGAT pathway is important for nitrogen assimilation. The in vitro rates of enzyme activity can however only account for about 10% of the in vivo rates of nitrogen assimilation. Nitrogen-starvation reduced GS activity to undetectable levels. On nitrate or ammonium ion refeeding the cellular GS activity was rapidly restored, and reached levels of 56% and 91% greater than the unstarved values 24h after refeeding nitrate or ammonium respectively.Abbreviations NAR nitrate reductase - NIR nitrate reductase  相似文献   

19.
Cell-free extracts of nitrate-grown as well as of ammonium-grown cells of the filamentous non-nitrogen-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl1) showed detectable levels of both glutamine synthetase (GS, EC 6.3.1.2) and NADPH-dependent glutamate dehydrogenase (GDH, EC 1.4.1.4) activities. The GS level of nitrate-grown cells was higher than that of ammonium-grown cells, whereas the GDH level was higher in ammonium-grown cells and depended on the external ammonium concentration. When nitrate-grown cells were transferred to an ammonium-containing medium, a decrease of GS and an increase of GDH specific activities occurred, even in the presence of nitrate. Conversely, when ammonia-grown cells were transferred to a nitrate-containing medium, an increase of GS and a decrease of GDH-specific activities took place. Both these effects were inhibited by chloramphenicol and were probably mediated by de novo protein synthesis. When either cell type was transferred to a medium without nitrogen source, the specific activities of both enzymes increased. When nitrate-grown cells were transferred to nitrate medium with L-methionine-DL-sulphoximine (MSX) added, the specific activity of GDH also increased. Here we present some evidence that, under certain conditions of nitrogen availability, GDH would play a minor role in ammonium assimilation.  相似文献   

20.
The present study was undertaken to examine the influence of toxic levels of Ni and Al, on the activities of key nitrogen assimilatory enzymes in roots and shoots of growing rice seedlings. When seedlings of two inbred rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12, sensitive to both Ni and Al, were raised in sand cultures containing 200 and 400 μM NiSO4 or 80 and 160 μM Al2(SO4)3, a marked inhibition in the activities of NO3 assimilatory enzymes NR and GS was observed in roots as well as shoots during a 5–20 day growth period. Both Ni and Al treatments, in growth medium, stimulated the activity of aminating glutamate dehydrogenase (NADH-GDH) whereas the activity of deaminating GDH (NAD+-GDH) decreased under metal toxicities. The activities of the aminotransferases studied; alanine aminotransferase (AlaAT) and aspartate amino transferase (AspAT) increased due to Ni and Al treatments. Results suggest that both Ni and Al treatments impair N assimilation in rice seedlings by inhibiting the activities of NR and GS and that GDH appears to play a role in assimilation of NH4 + in metal stress conditions. Further, higher activity of aminotransferases in metal stressed seedlings might be helpful in meeting higher demand of amino acids under stressed conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号