首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetochores are multisubunit complexes that assemble on centromeres to bind spindle microtubules and promote faithful chromosome segregation during cell division. A 16-subunit complex named the constitutive centromere–associated network (CCAN) creates the centromere–kinetochore interface. CENP-C, a CCAN subunit, is crucial for kinetochore assembly because it links centromeres with the microtubule-binding interface of kinetochores. The role of CENP-C in CCAN organization, on the other hand, had been incompletely understood. In this paper, we combined biochemical reconstitution and cellular investigations to unveil how CENP-C promotes kinetochore targeting of other CCAN subunits. The so-called PEST domain in the N-terminal half of CENP-C interacted directly with the four-subunit CCAN subcomplex CENP-HIKM. We identified crucial determinants of this interaction whose mutation prevented kinetochore localization of CENP-HIKM and of CENP-TW, another CCAN subcomplex. When considered together with previous observations, our data point to CENP-C as a blueprint for kinetochore assembly.  相似文献   

2.
Perpelescu M  Fukagawa T 《Chromosoma》2011,120(5):425-446
Equal distribution of DNA in mitosis requires the assembly of a large proteinaceous ensemble onto the centromeric DNA, called the kinetochore. With few exceptions, kinetochore specification is independent of the DNA sequence and is determined epigenetically by deposition at the centromeric chromatin of special nucleosomes containing an H3-related histone, CENP-A. Onto centromeric CENP-A chromatin is assembled the so-called constitutive centromere-associated network (CCAN) of 16 proteins distributed in several functional groups as follows: CENP-C, CENP-H/CENP-I/CENP-K/, CENP-L/CENP-M/CENP-N, CENP-O/CENP-P/CENP-Q/CENP-R/CENP-U(50), CENP-T/CENP-W, and CENP-S/CENP-X. One role of the CCAN is to recruit outer kinetochore components further, such as KNL1, the Mis12 complex, and the Ndc80 complex (KMN network) to which attach the spindle microtubules with their structural and regulatory proteins. Among the CENPs in CCAN, CENP-C and CENP-T are required in parallel for operational kinetochore specification and spindle attachment. This review presents discussion of the latest structural and functional data on CENP-A and CENPs from the CCAN as well as their interaction with the KMN network.  相似文献   

3.
At each mitosis, accurate segregation of every chromosome is ensured by the assembly of a kinetochore at each centromeric locus. Six foundation kinetochore proteins that assemble hierarchically and co-dependently have been identified in vertebrates. CENP-A, Mis12, CENP-C, CENP-H and CENP-I localize to a core domain of centromeric chromatin. The sixth protein, CENP-B, although not essential in higher eukaryotes, has homologues in fission yeast that bind pericentric DNA and are essential for heterochromatin formation. Foundation kinetochore proteins have various roles and mutual interactions, and their associations with centromeric DNA and heterochromatin create structural domains that support the different functions of the centromere. Advances in molecular and microscopic techniques, coupled with rare centromere variants, have enabled us to gain fresh insights into the linear and 3D organization of centromeric chromatin.  相似文献   

4.
Eukaryotic cells ensure accurate chromosome segregation in mitosis by assembling a microtubule-binding site on each chromosome called the kinetochore that attaches to the mitotic spindle. The kinetochore is assembled specifically during mitosis on a specialized region of each chromosome called the centromere, which is constitutively bound by >15 centromere-specific proteins. These proteins, including centromere proteins A and C (CENP-A and -C), are essential for kinetochore assembly and proper chromosome segregation. How the centromere is assembled and how the centromere promotes mitotic kinetochore formation are poorly understood. We have used Xenopus egg extracts as an in vitro system to study the role of CENP-C in centromere and kinetochore assembly. We show that, unlike the histone variant CENP-A, CENP-C is not maintained at centromeres through spermatogenesis but is assembled at the sperm centromere from the egg cytoplasm. Immunodepletion of CENP-C from metaphase egg extract prevents kinetochore formation on sperm chromatin, and depleted extracts can be complemented with in vitro–translated CENP-C. Using this complementation assay, we have identified CENP-C mutants that localized to centromeres but failed to support kinetochore assembly. We find that the amino terminus of CENP-C promotes kinetochore assembly by ensuring proper targeting of the Mis12/MIND complex and CENP-K.  相似文献   

5.
Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.  相似文献   

6.
CENP-H is a constitutive centromere component that localizes to the centromere throughout the cell cycle. Because CENP-H is colocalized with CENP-A and CENP-C, it is thought to be an inner centromere protein. We previously generated a conditional loss-of-function mutant of CENP-H and showed that CENP-H is required for targeting of CENP-C to the centromere in chicken DT40 cells. In the present study, we used this mutant to identify the functional region of chicken CENP-H necessary for centromere targeting and cell viability. This region was found by yeast two-hybrid analysis to interact with Hec1, which is a member of the Nuf2 complex that transiently localizes to the centromere during mitosis. Coimmunoprecipitation experiments revealed that CENP-H interacts with the Nuf2 complex in chicken DT40 cells. Photobleaching experiments showed that both Hec1 and CENP-H form stable associations with the centromeres during mitosis, suggesting that Hec1 acts as a structural component of centromeres during mitosis. On the basis of these results and previously published data, we propose that the Nuf2 complex functions as a connector between the inner and outer kinetochores.  相似文献   

7.
8.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

9.
Centromeres provide a region of chromatin upon which kinetochores are assembled in mitosis. Centromeric protein C (CENP-C) is a core component of this centromeric chromatin that, when depleted, prevents the proper formation of both centromeres and kinetochores. CENP-C localizes to centromeres throughout the cell cycle via its C-terminal part, whereas its N-terminal part appears necessary for recruitment of some but not all components of the Mis12 complex of the kinetochore. We now find that all kinetochore proteins belonging to the KMN (KNL1/Spc105, the Mis12 complex, and the Ndc80 complex) network bind to the N-terminal part of Drosophila CENP-C. Moreover, we show that the Mis12 complex component Nnf1 interacts directly with CENP-C in vitro. To test whether CENP-C's N-terminal part was sufficient to recruit KMN proteins, we targeted it to the centrosome by fusing it to a domain of Plk4 kinase. The Mis12 and Ndc80 complexes and Spc105 protein were then all recruited to centrosomes at the expense of centromeres, leading to mitotic abnormalities typical of cells with defective kinetochores. Thus, the N-terminal part of Drosophila CENP-C is sufficient to recruit core kinetochore components and acts as the principal linkage between centromere and kinetochore during mitosis.  相似文献   

10.
The kinetochore is a large protein complex that ensures accurate chromosome segregation during mitosis by connecting the centromere and spindle microtubules. One of the kinetochore sub-complexes, the constitutive centromere-associated network (CCAN), associates with the centromere and recruits another sub-complex, the KMN (KNL1, Mis12, and Ndc80 complexes) network (KMN), which binds to spindle microtubules. The CCAN-KMN interaction is mediated by two parallel pathways (CENP-C- and CENP-T-pathways) in the kinetochore, which bridge the centromere and microtubules. Here, we discuss dynamic protein-interaction changes in the two pathways that couple the centromere with spindle microtubules during mitotic progression.  相似文献   

11.
CENP-H has recently been discovered as a constitutive component of the centromere that co-localizes with CENP-A and CENP-C throughout the cell cycle. The precise function, however, remains poorly understood. We examined the role of CENP-H in centromere function and assembly by generating a conditional loss-of-function mutant in the chicken DT40 cell line. In the absence of CENP-H, cell cycle arrest at metaphase, consistent with loss of centromere function, was observed. Immunocytochemical analysis of the CENP-H-deficient cells demonstrated that CENP-H is necessary for CENP-C, but not CENP-A, localization to the centromere. These findings indicate that centromere assembly in vertebrate cells proceeds in a hierarchical manner in which localization of the centromere-specific histone CENP-A is an early event that occurs independently of CENP-C and CENP-H.  相似文献   

12.
The inner kinetochore protein complex binds to centromeres during the whole cell cycle. It serves as the basis for the binding of further kinetochore proteins during mitosis. CENP-H is one of the inner kinetochore proteins which is conserved amongst many eukaryotes. By specific RNAi knockdown, we reduced the CENP-H protein level in human HEp-2 cells down to less than 5% of its normal value. In these CENP-H knocked-down cells, we observed severe mitotic phenotypes like misaligned chromosomes and multipolar spindles, however, no mitotic arrest. Strong reduction of CENP-H resulted in a slightly reduced CENP-C level at the kinetochores and normal localisation of hBubR1, indicating a functional mitotic checkpoint at the hBubR1 protein level. In CENP-H knocked-down human cells, the misaligned chromosomes contained only reduced levels of CENP-E. Our data clearly indicate that CENP-H has an important impact on the architecture and function of the human kinetochore complex.  相似文献   

13.
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.  相似文献   

14.
We report that the histone acetyltransferase Gcn5p is involved in cell cycle progression, whereas its absence induces several mitotic defects, including inefficient nuclear division, chromosome loss, delayed G2 progression, and spindle elongation. The fidelity of chromosome segregation is finely regulated by the close interplay between the centromere and the kinetochore, a protein complex hierarchically assembled in the centromeric DNA region, while disruption of GCN5 in mutants of inner components results in sick phenotype. These synthetic interactions involving the ADA complex lay the genetic basis for the critical role of Gcn5p in kinetochore assembly and function. We found that Gcn5p is, in fact, physically linked to the centromere, where it affects the structure of the variant centromeric nucleosome. Our findings offer a key insight into a Gcn5p-dependent epigenetic regulation at centromere/kinetochore in mitosis.  相似文献   

15.
During mitosis, the spindle checkpoint senses kinetochores not properly attached to spindle microtubules and prevents precocious sister-chromatid separation and aneuploidy. The constitutive centromere-associated network (CCAN) at inner kinetochores anchors the KMN network consisting of Knl1, the Mis12 complex (Mis12C), and the Ndc80 complex (Ndc80C) at outer kinetochores. KMN is a critical kinetochore receptor for both microtubules and checkpoint proteins. Here, we show that nearly complete inactivation of KMN in human cells through multiple strategies produced strong checkpoint defects even when all kinetochores lacked microtubule attachment. These KMN-inactivating strategies reveal multiple KMN assembly mechanisms at human mitotic kinetochores. In one mechanism, the centromeric kinase Aurora B phosphorylates Mis12C and strengthens its binding to the CCAN subunit CENP-C. In another, CENP-T contributes to KMN attachment in a CENP-H-I-K–dependent manner. Our study provides insights into the mechanisms of mitosis-specific assembly of the checkpoint platform KMN at human kinetochores.  相似文献   

16.
The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the Drosophila kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen–deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12–Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.  相似文献   

17.
Kinetochores form a dynamic interface with the microtubules from the mitotic spindle to achieve accurate chromosome segregation. Multiple proteins are assembled on centromeric DNA to form the kinetochore structure. Recent insights regarding the mechanism of kinetochore formation in vertebrate cells have come from the identification and characterization of kinetochore proteins using a variety of approaches. Constitutive centromere associated network (CCAN) proteins create a platform for kinetochore formation. Subsequently, CCAN proteins recruit outer kinetochore components such as KNL1, the Mis12 complex and the Ndc80 complex (KMN network) that attach to the spindle microtubules, together comprising the functional kinetochore. In this review, we introduce and discuss putative roles of CCAN and KMN proteins during the process of kinetochore formation.  相似文献   

18.
Characterization of a novel kinetochore protein, CENP-H.   总被引:11,自引:0,他引:11  
  相似文献   

19.
Chromosome segregation requires centromeres on every sister chromatid to correctly form and attach the microtubule spindle during cell division. Even though centromeres are essential for genome stability, the underlying centromeric DNA is highly variable in sequence and evolves quickly. Epigenetic mechanisms are therefore thought to regulate centromeres. Here, we show that the 359-bp repeat satellite III (SAT III), which spans megabases on the X chromosome of Drosophila melanogaster, produces a long noncoding RNA that localizes to centromeric regions of all major chromosomes. Depletion of SAT III RNA causes mitotic defects, not only of the sex chromosome but also in trans of all autosomes. We furthermore find that SAT III RNA binds to the kinetochore component CENP-C, and is required for correct localization of the centromere-defining proteins CENP-A and CENP-C, as well as outer kinetochore proteins. In conclusion, our data reveal that SAT III RNA is an integral part of centromere identity, adding RNA to the complex epigenetic mark at centromeres in flies.  相似文献   

20.
CENP-A acts as an important epigenetic marker for kinetochore specification. However, the mechanisms by which CENP-A is incorporated into centromeres and the structural basis for kinetochore formation downstream of CENP-A remain unclear. Here, we used a unique chromosome-engineering system in which kinetochore proteins are targeted to a noncentromeric site after the endogenous centromere is conditionally removed. Using this system, we created two distinct types of engineered kinetochores, both of which were stably maintained in chicken DT40 cells. Ectopic targeting of full-length HJURP, CENP-C, CENP-I, or the CENP-C C terminus generated engineered kinetochores containing major kinetochore components, including CENP-A. In contrast, ectopic targeting of the CENP-T or CENP-C N terminus generated functional kinetochores that recruit the microtubule-binding Ndc80 complex and chromosome passenger complex (CPC), but lack CENP-A and most constitutive centromere-associated network (CCAN) proteins. Based on the analysis of these different engineered kinetochores, we conclude that the CCAN has two distinct roles: recruiting CENP-A to establish the kinetochore and serving as a structural core to directly recruit kinetochore proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号