首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis in the chloride secreting epithelial cell line T84 was monitored by uptake of the fluid-phase markers FITC-dextran and horseradish peroxidase (HRP). Uptake of marker was inhibited by incubation of cells at 4 degrees C, consistent with an endocytic uptake. Although activation of the cAMP-dependent second messenger pathway has been shown to stimulate exocytosis in this cell line, it caused a 63% reduction in endocytosis as measured by uptake of fluid-phase markers. In contrast, the presence of the protein kinase C activator phorbol-myristate acetate (PMA) caused no significant reduction in the level of endocytosis compared to control, nor did it reverse the inhibitory effect of PKA activation. The data thus suggest that endocytosis in T84 cells is regulated through activation of protein kinase A, but not through activation of protein kinase C.  相似文献   

2.
3.
4.
The effect of interleukin-4 (IL-4), a cytokine associated with allergy and inflammation, on the permeability of the intestinal epithelium was investigated. IL-4 reduced transepithelial electrical resistance (TER) and increased permeation to horseradish peroxidase (HRP) and Lucifer Yellow (LY) of human intestinal T84 cell monolayers. The increased permeation due to IL-4 treatment was also observed at 4 °C. The permeability of T84 cell monolayers to β-lactogulobulin (β-Lg), ovalbumin (OVA), and fluorescein isothiocyanate (FITC)-dextran of various molecular sizes was also high in the IL-4-treated cell monolayers. Sodium azide (NaN3), which inhibits ATP synthesis of the cells, did not inhibit the increases in these substances. Even 150 kDa FITC-dextran significantly permeated the T84 cells when the monolayers were treated with IL-4. These results suggest that fairly large molecules are able to permeate intestinal epithelial monolayers via the energy-independent paracellular pathway when the monolayers are exposed to excessive IL-4.  相似文献   

5.
Mast cell activation is associated with atopic and inflammatory diseases, but the natural controls of mast cell homeostasis are poorly understood. We hypothesized that CD4(+)CD25(+) regulatory T cells (Treg) could function in mast cell homeostasis. In this study, we demonstrate that mast cells can recruit both Treg and conventional CD4(+) T cells (Tconv). Furthermore, Treg, but not Tconv, suppress mast cell FcepsilonRI expression. Despite the known inhibitory functions of IL-10 and TGFbeta1, FcepsilonRI suppression was independent of IL-10 and TGF-beta1 and required cell contact. Surprisingly, coculture with either Treg or Tconv cells suppressed IgE-mediated leukotriene C(4) production but enhanced cytokine production by mast cells. This was accompanied by a selective increase in FcepsilonRI-mediated Stat5 phosphorylation, which is a critical mediator of IgE-mediated cytokine secretion. These data are the first direct demonstration that mast cells can recruit Treg and illustrate that T cell interactions can alter the mast cell response.  相似文献   

6.
Salmonella activates the phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway in epithelial cells, but its role in inflammation has not been previously elucidated. We show here that inhibition of PI3K in T84 intestinal epithelial cells results in augmentation of Salmonella-induced interleukin-8 (IL-8) production at the level of both protein and mRNA. The mechanism of this effect appears to involve altered activation of the extracellular growth factor-regulated kinase (ERK), a molecule that is implicated in the regulation of IL-8 expression. These results identify activation of the PI3K/Akt pathway as an anti-inflammatory signal that may contribute to the establishment of Salmonella in the intestine.  相似文献   

7.
8.
Lymphokine secretion profiles were studied of human allergen-specific CD4+ T lymphocyte clones (TLC). To this aim, panels of house dust mite Dermatophagoides pteronyssinus (Dp)-specific TLC were generated from two atopic Dp-allergic patients, suffering from severe atopic dermatitis (AD1) and allergic asthma (AD2), respectively, and from a non-atopic individual (NAD). From AD1 additional TLC were cloned specific for tetanus toxoid or Candida albicans, both Ag that were not relevant for the atopic state of this patient. Secretion of IL-2, IL-4, and IFN-gamma was determined after specific stimulation of these TLC, using autologous monocytes as APC. With respect to the production of IL-4 and IFN-gamma, clearly distinct profiles were observed. All Dp-specific TLC from both atopic donors produced IL-4 but not IFN-gamma, whereas the Dp-specific TLC from NAD, as well as the tetanus toxoid- and C. albicans-specific TLC from AD1, all produced IFN-gamma but not or small quantities of IL-4. Most TLC from all panels produced IL-2. These lymphokine profiles were consistent for at least 3 days and were neither dependent on the dose of allergen nor on the atopic or nonatopic state of the donor of APC. The functional consequence of these restricted lymphokine profiles was stressed by the observation that, whereas Dp-specific TLC from AD1 and AD2 supported in vitro IgE production, this support could be abrogated by a Dp-specific TLC from NAD. The present results suggest that CD4+ T lymphocytes that produce IL-4, but not IFN-gamma, occur in high frequencies in the allergen-specific T cell repertoires of atopic donors, which may have important implications for the pathomechanism of atopic disease.  相似文献   

9.
A characteristic of many enteropathies is increased epithelial permeability, a potentially pathophysiological event that can be evoked by T helper (Th)-1 (i.e., IFN-gamma) and Th2 (i.e., IL-4) cytokines and bacterial infection [e.g., enteropathogenic Escherichia coli (EPEC)]. The green tea polyphenol (-)-epigallocatechin gallate (EGCG) has immunosuppressive properties, and we hypothesized that it would ameliorate the increased epithelial permeability induced by IFN-gamma, IL-4, and/or EPEC. EGCG, but not the related epigallocatechin, completely prevented the increase in epithelial (i.e., T84 cell monolayer) permeability caused by IFN-gamma exposure as gauged by transepithelial resistance and horseradish peroxidase flux; EGCG did not alleviate the barrier disruption induced by IL-4 or EPEC. IFN-gamma-treated T84 and THP-1 (monocytic cell line) cells displayed STAT1 activation (tyrosine phosphorylation on Western blot analysis, DNA binding on EMSA) and upregulation of interferon response factor-1 mRNA, a STAT1-dependent gene. All three events were inhibited by EGCG pretreatment. Aurintricarboxylic acid also blocked IFN-gamma-induced STAT1 activation, but it did not prevent the increase in epithelial permeability. Additionally, pharmacological blockade of MAPK signaling did not affect IFN-gamma-induced epithelial barrier dysfunction. Thus, as a potential adjunct anti-inflammatory agent, EGCG can block STAT1-dependent events in gut epithelia and monocytes and prevent IFN-gamma-induced increased epithelial permeability. The latter event is both a STAT1- and MAPK-independent event.  相似文献   

10.
IL-1R-associated kinases (IRAKs) are important mediators of MyD88-dependent signaling by the TLR/IL-1R superfamily and facilitate inflammatory responses. IRAK4 and IRAK1 function as active kinases and as scaffolds for protein-protein interactions. We report that although IRAK1/4 kinase activity is essential for human plasmacytoid dendritic cell (pDC) activation, it is dispensable in B, T, dendritic, and monocytic cells, which is in contrast with an essential active kinase role in comparable mouse cell types. An IRAK1/4 kinase inhibitor abrogated TLR7/9-induced IFN-α responses in both mouse and human pDCs, but other human immune cell populations activated via TLR7/9 or IL-1R were refractory to IRAK4 kinase inhibition. Gene ablation experiments using small interfering RNA demonstrated an essential scaffolding role for IRAK1 and IRAK4 in MyD88-dependent signaling. Finally, we demonstrate that autoimmune patient (systemic lupus erythematosus and rheumatoid arthritis) serum activates both pDC and B cells, but IRAK1/4 kinase inhibition affects only the pDC response, underscoring the differential IRAK1/4 functional requirements in human immune cells. These data reveal important species differences and elaborate cell type requirements for IRAK1/4 kinase activity.  相似文献   

11.
EAAT4 (SLC1A6) is a Purkinje-Cell-specific post-synaptic excitatory amino acid transporter that plays a major role in clearing synaptic glutamate. EAAT4 abundance and function is known to be modulated by the serum and glucocorticoid inducible kinase (SGK) 1 but the precise mechanism of kinase action has not been defined yet. The present work aims to identify the molecular mechanism of EAAT4 modulation by the kinase. The EAAT4 sequence bears two putative SGK1 consensus sites (at Thr40 and Thr504) at the amino and carboxy terminus that are conserved among species. Expression studies in Xenopus oocytes demonstrated that EAAT4-mediated [(3)H] glutamate uptake and cell surface abundance are enhanced by co-expression of SGK1. Disruption of the SGK1 phosphorylation site at threonine 40 ((T40A)EAAT4) or of both phosphorylation sites ((T40AT504A)EAAT4) abrogated the effect of SGK1 on transporter function and expression. SGK1 modulates several transport proteins via inhibition of the ubiquitin ligase Nedd4-2. Co-expression of Nedd4-2 inhibited wild-type EAAT4 but not the (T40AT504A)EAAT4 mutant. Besides, RNA interference-mediated reduction of endogenous Nedd4-2 (xNedd4-2) expression increased the activity of the transporter. In conclusion, maximal glutamate transport modulation by SGK1 is accomplished by direct EAAT4 stimulation and to a lesser extent by inhibition of intrinsic Nedd4-2.  相似文献   

12.
To elucidate the role and mechanism of action of interleukin (IL)-10 in regulating airway smooth muscle (ASM) responsiveness in the atopic asthmatic state, isolated rabbit tracheal ASM segments were passively sensitized with serum from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects in both the absence and presence of an anti-IL-10 receptor blocking antibody (Ab). Relative to control ASM, atopic asthmatic serum-sensitized tissues exhibited enhanced isometric constrictor responses to administered acetylcholine and attenuated the relaxation responses to isoproterenol. These proasthmatic effects were prevented in atopic asthmatic serum-sensitized ASM that was pretreated with anti-IL-10 receptor Ab. In complementary experiments, exposure of cultured human ASM cells to atopic asthmatic serum induced upregulated expression of IL-10 mRNA. Moreover, extended studies demonstrated that 1) exogenous IL-10 administration to naive ASM elicited augmented contractility to acetylcholine and impaired relaxation to isoproterenol, 2) these effects of IL-10 were prevented by pretreating the tissues with an IL-5 receptor Ab, and 3) IL-10 administration induced upregulated mRNA expression and release of IL-5 protein from cultured ASM cells. Collectively, these findings provide new evidence demonstrating that the altered responsiveness of atopic asthmatic serum-sensitized ASM is largely attributed to activation of an intrinsic T helper type 2-type autocrine mechanism involving IL-10-mediated release and the action of IL-5 in the sensitized ASM itself.  相似文献   

13.
We have localized horseradish peroxidase (HRP) in the mouse uterus after intravenous administration on days 1 and 5 of pregnancy in an effort to understand how serum proteins reach the uterine lumen. Direct movement of HRP into uterine and glandular lumina was blocked by the epithelial tight junctions on both days. In luminal and glandular epithelial cells at both times, HRP was localized in endocytic vesicles along the basolateral membranes, multivesicular bodies (mvb), elongated dense bodies below the nucleus (bdb), and many small vesicles near the apical surface of the cells. The uptake of HRP was most extensive in the luminal epithelium on day 1: the number of tracer-containing apical vesicles and bdb was largest, and there were also clusters of vesicles containing the tracer above the nucleus. Acid phosphatase was localized on day 1 in mvb and bdb in both cell types, indicating that these structures are lysosomes. It appeared that HRP followed two pathways after basolateral endocytosis by the epithelial cells: it was transported to the apical region of the cells, where it was present in small vesicles that may release their contents into the uterine or glandular lumina, or it was transported to lysosomes. To investigate whether macromolecules may be transported from the uterine lumen to the stroma, we also studied endocytosis at the apical pole of luminal epithelial cells after intraluminal injection of HRP. There was no detectable uptake of HRP from the lumen on day 1, and no tracer was detected in the intercellular spaces or basement membrane region. On day 5, a large amount of HRP was taken up from the lumen into apical endocytic vesicles, mvb, and dense bodies, but tracer was not present in the Golgi apparatus, lateral intercellular spaces, or the basement membrane region at the times studied. These observations indicate that there was no transport of luminal macromolecules to the uterine stroma on day 1, while the possibility of transport on day 5 requires further study.  相似文献   

14.
The NADPH oxidase 1 (Nox1) is a gp91(phox) homologue preferentially expressed in the colon. We have established primary cultures of guinea pig large intestinal epithelial cells giving 90% purity of surface mucous cells. These cells spontaneously released superoxide anion (O(2)(-)) of 160 nmol/mg protein/h and expressed the Nox1, p22(phox), p67(phox), and Rac1 mRNAs, but not the gp91(phox), Nox4, p47(phox), p40(phox), and Rac2 mRNAs. They also expressed novel homologues of p47(phox) and p67(phox) (p41(nox) and p51(nox), respectively). Human colon cancer cell lines (T84 and Caco2 cells) expressed the Nox1, p22(phox), p51(nox), and Rac1 mRNAs, but not the other NADPH component mRNAs, and secreted only small amounts of O(2)(-) (<2 nmol/mg protein/h). Cotransfection of p41(nox) and p51(nox) cDNAs in T84 cells enhanced PMA-stimulated O(2)(-) release 5-fold. Treatment of the transfected T84 cells with recombinant flagellin (rFliC) from Salmonella enteritidis further augmented the O(2)(-) release in association with the induction of Nox1 protein. The enhanced O(2)(-) production by cotransfection of p41(nox) and p51(nox) vectors further augmented the rFliC-stimulated IL-8 release from T84 cells. T84 cells expressed the Toll-like receptor 5, and rFliC rapidly phosphorylated TGF-beta-activated kinase 1 and TGF-beta-activated kinase 1-binding protein 1. A potent inhibitor for NF-kappaB (pyrrolidine dithiocarbamate) significantly blocked the rFliC-primed increase in O(2)(-) production and induction of Nox1 protein. These results suggest that p41(nox) and p51(nox) are involved in the Nox1 activation in surface mucous cells of the colon, and besides that, epithelial cells discern pathogenicities among bacteria to appropriately operate Nox1 for the host defense.  相似文献   

15.
16.
Thromboxane A2 (TXA2) is an arachidonate metabolite which is considered to relate to chronic inflammation in atopic diseases characterized by elevated immunoglobulin E productivity. The elevation of immunoglobulin E levels involves many molecules including interleukin-4 (IL-4) and interleukin-4 receptor alpha chain (IL-4R alpha). To assess whether genetic variants of TXA2 receptor, IL-4 and IL-4R alpha genes relate to the elevation of serum immunoglobulin E levels in patients with atopic dermatitis (AD), we conducted an association study of genetic polymorphisms of TXA2 receptor (795C/T), IL-4 (-589C/T), and IL-4R alpha (Ile50Val) in a Japanese population (n = 789). The TXA2 receptor 795TT genotype strongly related to AD with high serum immunoglobulin E concentrations. AD patients with both TXA2 receptor 795TT genotype and the IL-4R alpha Ile50/Ile50 genotype showed the greatest immunoglobulin E concentrations. These results suggest TXA2 receptor polymorphism strongly interacts with IL-4R alpha polymorphism as a major determinant of high serum immunoglobulin E levels in AD.  相似文献   

17.
A positive lymphocyte transformation test to beta-lactams (beta-L) was found in 12 of 29 subjects with adverse drug reaction (ADR) to beta-L, irrespective of either the type of clinical manifestation or the presence of specific serum IgE. Short-term T cell lines specific for penicillin G, amoxicillin, and ampicillin could be generated only from subjects with ADR (eight with positive and one with negative lymphocyte transformation test), while streptokinase and Dermatophagoides pteronyssinus group 1 (Der p 1)-specific T cells were obtained from all these subjects, from 7 atopic Der p-sensitive donors without history of ADR and 17 healthy nonatopic donors. Streptokinase-specific T cells from all subjects showed intracellular expression of IFN-gamma with poor or no IL-4, whereas Der p 1-specific T cells exhibited IFN-gamma but low or no IL-4 expression in nonatopics, and remarkable IL-4 expression in atopic donors. By contrast, all penicillin G-, ampicillin-, and amoxicillin-specific short-term T cell lines showed high intracellular expression of IL-4, IL-5, and IL-13, but poor or no expression of IFN-gamma, thus exhibiting a clear-cut Th2 profile. Accordingly, most penicillin G-specific T cell clones derived from two subjects with ADR released high concentrations of IL-4 alone or IL-4 and IFN-gamma. These data suggest that cytokines produced by Th2 cells play an important role in all beta-L-induced ADR, even when late clinical manifestations occur and an IgE-mediated mechanism is apparently indemonstrable.  相似文献   

18.
Our goal was to examine the sidedness of effects of the purinergic agonist, uridine 5'-triphosphate (UTP), on Cl(-) secretion in intestinal epithelial cells. We hypothesized that UTP might exert both stimulatory and inhibitory effects. All studies were conducted with T84 intestinal epithelial cells. UTP induced Cl(-) secretion in a concentration-dependent fashion. Responses to serosally added UTP were smaller and more transient than those evoked by mucosal addition, but there was no evidence that mucosal responses involved cAMP-dependent mechanisms. Pretreatment with serosal UTP inhibited subsequent Ca(2+)-dependent Cl(-) secretion induced by carbachol or thapsigargin, or secretion induced by mucosal UTP, in a manner that was reversed by a tyrosine kinase inhibitor. The inhibitory effect of serosal UTP on Cl(-) secretion was not additive with that of carbachol, known to exert its inhibitory effects through the tyrosine kinase-dependent generation of inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)]. Moreover, responses to both serosal and mucosal UTP were reduced by prior treatment of T84 cells with carbachol. Finally, serosal, but not mucosal, UTP evoked an increase in Ins(3,4,5,6)P(4). We conclude that different signaling mechanisms lie downstream of apical and basolateral UTP receptors in epithelial cells, at least in the intestine. These differences may be relevant to the use of UTP as a therapy in cystic fibrosis.  相似文献   

19.
20.
In allergic inflammations of the skin, activation of CD4+ T cells was demonstrated to play an important role; however, a minor role for CD8+ T cells is implied. In the present study, we compared cutaneous lymphocyte-associated Ag (CLA)-expressing CD4+ and CD8+ subsets, which were isolated from peripheral blood and lesional skin biopsies in atopic dermatitis (AD) patients. We demonstrated that CD8+CLA+ T cells proliferate in response to superantigen and are as potent as CD4+CLA+ T cells in IgE induction and support of eosinophil survival. In atopic skin inflammation, the existence of high numbers of CD4+ and CD8+ T cells was demonstrated by immunohistochemistry and by culturing T cells from skin biopsies. In peripheral blood, both CD4+ and CD8+ subsets of CLA+CD45RO+ T cells were in an activated state in AD. The in vivo-activated CLA+ T cells of both subsets spontaneously released an IL-5- and IL-13-dominated Th2 type cytokine pattern. This was confirmed by intracytoplasmic cytokine staining immediately after isolation of the cells from peripheral blood. In consequence, both CD4+ and CD8+, CLA+ memory/effector T cells induced IgE production by B cells mainly by IL-13, and enhanced eosinophil survival in vitro by delaying eosinophil apoptosis, mainly by IL-5. These results indicate that in addition to the CD4+ subset, the CD8+CLA+ memory/effector T cells are capable of responding to superantigenic stimulation and play an important role in the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号