首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two isoforms of the vertebrate nonmuscle myosin heavy chain, MHC-A and MHC-B, that are encoded by two separate genes. We compared the enzymatic activities as well as the subcellular localizations of these isoforms in Xenopus cells. MHC-A and MHC-B were purified from cells by immunoprecipitation with isoform-specific peptide antibodies followed by elution with their cognate peptides. Using an in vitro motility assay, we found that the velocity of movement of actin filaments by MHC-A was 3.3-fold faster than that by MHC-B. Likewise, the Vmax of the actin-activated Mg(2+)-ATPase activity of MHC-A was 2.6- fold greater than that of MHC-B. Immunofluorescence microscopy demonstrated distinct localizations for MHC-A and MHC-B. In interphase cells, MHC-B was present in the cell cortex and diffusely arranged in the cytoplasm. In highly polarized, rapidly migrating interphase cells, the lamellipodium was dramatically enriched for MHC-B suggesting a possible involvement of MHC-B based contractions in leading edge extension and/or retraction. In contrast, MHC-A was absent from the cell periphery and was arranged in a fibrillar staining pattern in the cytoplasm. The two myosin heavy chain isoforms also had distinct localizations throughout mitosis. During prophase, the MHC-B redistributed to the nuclear membrane, and then resumed its interphase localization by metaphase. MHC-A, while diffuse within the cytoplasm at all stages of mitosis, also localized to the mitotic spindle in two different cultured cell lines as well as in Xenopus blastomeres. During telophase both isoforms colocalized to the contractile ring. The different subcellular localizations of MHC-A and MHC-B, together with the data demonstrating that these myosins have markedly different enzymatic activities, strongly suggests that they have different functions.  相似文献   

2.
Two different mRNAs encoding two different nonmuscle myosin heavy chains (MHCs) of approximately 200 kD have been identified in chicken nonmuscle cells, in agreement with the results of Katsuragawa et al. (Katsuragawa, Y., M. Yanagisawa, A. Inoue, and T. Masaki. 1989. Eur. J. Biochem. 184:611-616). In this paper, we quantitate the content of mRNA encoding the two MHCs in a number of different tissues using RNA blot analysis with two specific oligonucleotide probes. Our results show that the relative content of mRNA encoding MHC-A and MHC-B differs in a tissue-dependent manner. Thus the ratio of mRNA encoding MHC-A versus MHC-B varies from greater than 9:1 in spleen and intestinal epithelial cells, to 6:4 in kidney and 2:8 in brain. The effect of serum on MHC mRNA expression was studied in serum-starved cultures of chick embryo fibroblasts. Serum stimulation results in a threefold increase in the mRNA encoding MHC-A and a threefold decrease in mRNA encoding MHC-B. Using SDS polyacrylamide gels, we have separated two nonmuscle MHC isoforms (198 and 196 kD) that can be distinguished from each other by two-dimensional peptide mapping of chymotryptic digests. We provide preliminary evidence that the MHC-A mRNA encodes the 196-kD polypeptide and that the MHC-B mRNA encodes the 198-kD polypeptide.  相似文献   

3.
The pharynx is a distinctive organ in the center of the body of planarians. Although the process of pharynx regeneration has been studied previously, the details and mechanism of the process remain controversial. We examined the process of regeneration of the pharynx in the planarian Dugesia japonica in detail by in situ hybridization and immunohistochemistry for myosin heavy chain-A (DjMHC-A), which is mainly expressed in the pharynx muscles and pharynx-anchoring muscles. We also monitored the behavior of the neoblasts in this process. In the regenerating posterior body fragment, the pharyngeal rudiment was formed by accumulation of cells that were probably undifferentiated cells derived from the neoblasts. The pharynx muscles appeared to differentiate in the rudiment in a manner that was coordinated with the differentiation of the pharynx-anchoring muscles in the region surrounding the rudiment. During this process, all cells containing mRNA for DjMHC-A also contained the DjMHC-A protein. These results argue against a previously proposed hypothesis that in the mesenchyme, 'pharynx-forming cells', which are committed to differentiate into the pharyngeal cells but have not yet differentiated, gather in the rudiment to form the pharynx (Agata and Watanabe, 1999). Rather, the present observations suggest that regeneration of the planarian pharynx proceeds by accumulation of cells that are probably undifferentiated cells derived from neoblasts in the rudiment, followed by their differentiation into the pharyngeal cells there.  相似文献   

4.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

5.
Summary Electrophoresis of myosin extracts from larvae and adult tissues ofDrosophila melanogaster under non-dissociating conditions indicate that two of the bands seen are myosins. They stain for Ca2+ ATPase activity and when cut and re-run under dissociating conditions are found to contain a myosin heavy chain that co-migrates with rabbit skeletal muscle myosin heavy chain. One of the forms of myosin seen is found primarily in extracts from the leg. The other is common to the adult fibrillar flight muscles and the larval body wall muscles.The electrophoretic evidence for two myosin types is strengthened by the histochemical demonstration of two myofibrillar ATPases on the basis of their lability to acid or alkali preincubation. The myofibrillar ATPase in the leg and the Tergal Depressor of the Trochanter (TDT) are shown to be relatively acid labile and alkali stable. The larval body wall muscles and the adult fibrillar flight muscles have an ATPase which is acid stable and alkali labile. This distribution of the two myofibrillar ATPase coincides with that predicted by electrophoresis of extracts from whole tissue and also locates the two myosins to specific muscle types.  相似文献   

6.
1. Actomyosin extracts of trunk, heart, and head muscles from barbel (Barbus barbus L.) were analyzed by SDS-polyacrylamide gel electrophoresis to study their myosin heavy chain composition. 2. Four heavy chain isoforms were found: trunk white, trunk red, and ventricle muscles yielded one heavy chain typical of the muscle type; head muscles devoid of red fibers displayed two heavy chain isoforms, the slow migrating one corresponding to the trunk white muscle type. 3. The electrophoretic mobility of red and ventricle myosin heavy chains related to that of white isoforms appeared highly modified by the glycerol content of the gels.  相似文献   

7.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   

8.
The fiber-type composition of postnatal chicken leg muscle spindles with from one to four intrafusal fibers was examined in sections incubated with monoclonal antibodies against fast and slow myosin heavy chains. In monofibral spindles the lone intrafusal fiber was almost always fast. In duofibral spindles usually one slow and one fast fiber were present. Trifibral spindles most often displayed two fast and one slow fiber, whereas quadrofibral receptors characteristically contained two slow and two fast fibers. Earlier results showed that the primary intrafusal myotube in nascent spindles has almost always a fast myosin heavy chain profile and that the proportion of slow myotubes and fibers increases as intrafusal fiber bundles grow in size. Data from postnatal chicken leg muscles collected here suggest that up to the first four fibers this proportional increase can be largely accounted for if consecutive intrafusal fibers arise in a fast-slow-fast-slow sequence. The late recognition during myogenesis of primary intrafusal myotubes and their fast myosin heavy chain profiles warrant exploring if nascent chicken muscles spindles are first seeded by fast fetal myoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Previous studies have reported the existence of skeletal muscle fibers that coexpress multiple myosin heavy chain isoforms. These surveys have usually been limited to studying the polymorphic profiles of skeletal muscle fibers from a limited number of muscles (i.e., usually <4). Additionally, few studies have considered the functional implications of polymorphism. Hence, the primary objective of this study was to survey a relatively large number of rat skeletal muscle/muscle regions and muscle fibers (n approximately 5,000) to test the hypothesis that polymorphic fibers represent a larger fraction of the total pool of fibers than do so-called monomorphic fibers, which express only one myosin heavy chain isoform. Additionally, we used Hill's statistical model of the force-velocity relationship to differentiate the functional consequences of single-fiber myosin heavy chain isoform distributions found in these muscles. The results demonstrate that most muscles and regions of rodent skeletal muscles contain large proportions of polymorphic fibers, with the exception of muscles such as the slow soleus muscle and white regions of fast muscles. Several muscles were also found to have polymorphic profiles that are not consistent with the I<-->IIA<-->IIX<-->IIB scheme of muscle plasticity. For instance, it was found that the diaphragm muscle normally contains I/IIX fibers. Functionally, the high degree of polymorphism may 1) represent a strategy for producing a spectrum of contractile properties that far exceeds that simply defined by the presence of four myosin heavy chain isoforms and 2) result in relatively small differences in function as defined by the force-velocity relationship.  相似文献   

10.
Summary The fiber type composition of two fast muscles of the chicken, namely, adductor superficialis (AS) and pectoralis major (PM) was examined by the histochemical myosin ATPase staining and immunochemical techniques using monoclonal antibodies (McAbs). Two new McAbs produced against the myosin of the anterior latissimus dorsi (ALD) muscle of the chicken and named ALD-122 and ALD-83 were characterized to be specific for myosin heavy chain (MHC) and for myosin light chain-1 respectively. They were used in conjunction with previously reported McAbs specific for slow MHC (ALD-47), fast MHC (MF-14) and fast light chain-2 (MF-5). By the histochemical ATPase test most muscle fibers of AS and PM muscles reacted as IIA and IIB respectively. By immunofluorescent staining with the anti-MHC McAbs, ALD-122, and MF-14, the fibers of AS, muscle showed remarkable heterogeneity whereas PM muscle fibers reacted, uniformly. Differences in the myosin light chain composition of AS and PM muscles were also found by SDS-gel electrophoresis and immunoblot analysis with the anti-light chain McAb, ALD-83. The study clearly indicated that the histochemically homogenous (type IIA) AS muscle is composed of several subpopulations of fibers which differ in their myosin composition and that this heterogeneity of the muscle is not simply due to presence of variable amounts of slow myosin in its fibers.  相似文献   

11.
Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber–type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber–type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.  相似文献   

12.
The immunohistochemical profile of intact and denervated soleus muscle of guinea pigs after sensibilization was studied. It is shown, that intact soleus muscle consists of slow fibers, which have low ATP-ase activity and don't react with monoclonal antibodies against fast myosin heavy chain. No changes of immunohistochemical profile were found after denervation or sensibilization. At the same time, the fibers, reacting with monoclonal antibodies against fast myosin heavy chain and having low ATP-ase activity, were found in denervated muscles after sensibilization. It is concluded, that the synthesis of fast myosin is induced after sensibilization of denervated muscles. Validity of myosin ATP-ase histochemistry for muscle fibers typing is discussed.  相似文献   

13.
J Kucera  J M Walro 《Histochemistry》1988,90(2):151-160
Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles were excised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

14.
Indirect immunofluorescence analysis of different rat skeletal muscles using anti-myosin heavy chain (MHC) monoclonal antibodies (MAb) revealed the presence of two immunologically distinct kinds of fibers within the IIB fibers, histochemically identified by myosin ATPase staining. Some IIB fibers (designated here as IIB1) were unreactive with one anti-fast MHC MAb, whereas they did react with another anti-fast MHC MAb; other IIB fibers (designated here as IIB2) reacted with both anti-fast MAbs. Neither of the two IIB fiber subtypes was significantly reactive with a neonatal MHC MAb. The number of each IIB fiber subtype was age-dependent, at least in the plantaris muscle. IIB1 fibers were observed only in the superficial portion of the plantaris and gastrocnemius muscle. The ratio of IIB1:IIB2 fibers was about the same throughout the extensor digitorum longus and extraocular muscles. Therefore, the two kinds of IIB fibers here observed have a different myosin heavy chain content. On the basis of their specific immunoreactivities, we suggest that IIB1 fibers contain the previously described MHCB. IIB2 fibers contain either a unique new MHC isoform or a mixture of at least two MHC, possibly composed of the MHCB and either the previously described MHCA or a new MHC isoform.  相似文献   

15.
Summary Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

16.
Combined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).  相似文献   

17.
Summary Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles wereexcised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

18.
Mammalian skeletal muscles are mixture of three type of fibers: type 1, type 2A, and type 2B fibers. Immunological studies and proteolytic analysis of myosin heavy chains from the three type of fibers have demonstrated the presence of distinct myosin isoforms. By using typed single muscle fibers and improving an electrophoretic method we are able to resolve three distinct polypeptides which are demonstrate to correspond to type 1, 2A and 2B myosin heavy chain isoforms by using specific monoclonal antibodies. The analysis of single muscle fibers shows that different myosin heavy chain isoforms are frequently coexpressed in the same muscle fiber.  相似文献   

19.
The complete amino acid sequence of a vertebrate nonmuscle myosin heavy chain-B isoform (MHC-B, 1976 amino acids, 229 kDa) has been deduced by using cDNA clones from chicken brain libraries. The chicken nonmuscle MHC-B shows overall similarity in primary structure to other MHCs in the areas contributing to the ATP-binding site and actin-binding site. Similar to other nonsarcomeric MHC IIs, there is a short uncoiled tail sequence at the carboxyl terminus of the molecule. It is in the uncoiled tail sequence that the greatest number of differences in amino acids sequence between MHC-A and B were found, which allowed generation of isoform-specific antibodies. These antibodies were used to determine the relative content of MHC-A and MHC-B in various tissues. During the cloning of the cDNA encoding chicken brain MHC-B, we found a 63-nucleotide insertion encoding 21 amino acids located in the head region of the MHC near to the actin-binding site and a 30 nucleotide insertion encoding 10 amino acids near to the ATP-binding site. Analysis using S-1 nuclease showed that both inserts are expressed in a tissue-dependent manner; mRNA containing the inserts is present in tissues of the nervous system, but is absent from other non-muscle cells, which contain the noninserted isoform of MHC-B. Similar inserts were found in corresponding positions in human cerebellar mRNA. Antibodies raised against a peptide synthesized based on the 21 amino acid insert found in chickens recognize a MHC isoform in the same tissues that are enriched for the mRNA. These insertions appear to be a mechanism for generating additional MHC-B isoforms specific to the nervous system.  相似文献   

20.
We show that PTP1D, a protein tyrosine phosphatase that contains two SH2 domains, is preferentially expressed in slow skeletal muscle fibers. Immunohistochemical staining using polyclonal antibodies against PTP1D demonstrated that PTP1D was expressed in a subpopulation of rodent muscle fibers. These fibers were identified as slow Type I fibers based on histochemical ATPase assays and slow myosin heavy chain expression. Northern and Western analyses showed that PTP1D levels were higher in predominantly slow muscles than in predominantly fast muscles. This differential expression of PTP1D in slow muscle fibers appeared by birth. In cultures of mouse myogenic cells, PTP1D was expressed after MyoD and myogenin and appeared in myotubes derived from embryonic, fetal, and postnatal myoblasts. Remarkably, PTP1D was organized into sarcomeres in a pattern coincident with myosin heavy chain, suggesting that PTP1D associates with a component of the thick filament. These results show that PTP1D is preferentially expressed in slow muscle fibers. We speculate that PTP1D may play a role in slow muscle fiber function and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号