首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The melanophores in the dermis on scales in the bitterling, Acheilognathus lanceolatus were studies to obtain information about the control mechanism of aggregation and dispersion using intact, membrane-permeabilized and cultured cells. The cultured melanophores showed supersensitivity, namely, they responded to norepinephrine with much higher sensitivity than intact cells. The cultured melanophores failed to respond to high KCl. Melatonin aggregated and adenosine dispersed melanosomes within a cell. Digitonin permeabilized cells showed aggregation with Ca ions and dispersion by cyclic adenosine 3',5'-monophosphate (cAMP) in the presence of ATP. Movement of melanosomes was observed under the high magnification of light microscope and the tracks of each pigment granule were followed. The granules moved fast and linearly during aggregation, whereas they showed to-and-fro movement during dispersion.  相似文献   

2.
SYNOPSIS The structure and gliding movement of Gregarina garnhami Canning, a eugregarine found in the midgut of the desert locust, Schistocerca gregaria , have been studied by light microscopy and transmission and scanning electron microscopy (EM). Ultrastructural studies revealed that the cytoplasm of G. garnhami is separated from the epicyte folds by a basal lamina. The pellicle consists of 3 membrane layers. At the tips of the epicyte folds there are 2 sets of longitudinally oriented filaments. An ectoplasmic network is present in the ectoplasm and the endoplasm contains numerous paraglycogen granules. The effect of cytochalasin B on G. garnhami was studied. Examination of scanning EM preparations of gliding and stationary gregarines yielded inconclusive results. In some instances the epicyte folds were thrown into waves; in others the folds were straight, regardless of treatment before fixation. Gregarina garnhami glides through its environment without any apparent deformation in shape. As it moves, a mucus trail is left behind it. Phase-contrast observations were made of centrifuged gregarines in which the endoplasm was displaced. Centrifuged gregarines continued to glide. Displacement of the endoplasm allows visualization of the epicyte folds in gliding animals. No lateral waves were seen in the epicyte folds of gliding centrifuged animals.  相似文献   

3.
The melanophores of the teleost Gymnocorymbus ternetzi are filled with pigment granules, melanosomes, which in response to appropriate treatments, can disperse throughout the cytoplasm or form an aggregate in the cell center. Melanophores with the dispersed pigment were irradiated by a laser microbeam, focused on the cell center by the microscope objective. If the average energy of the microbeam was 6-7 microJ, either the center of the melanophore was damaged and a single ring-shaped fragment was formed, or the cell was broken into several fragments of smaller size. The fragments retained their ability to move the pigment granules. In ring-shaped fragments, after adrenaline treatment, the melanosomes formed a ring-shaped aggregate moving away from both outer and inner (irradiation-produced) margins of the fragment. The smaller fragments treated with adrenaline moved the pigment to their centers. Both small and ring-shaped fragments could aggregate melanosomes as soon as 5 minutes after irradiation.  相似文献   

4.
Melanin deposits in the brain ventricles of Xenopus tadpoles were studied with light and electron microscopy (TEM and SEM). They appeared to be aggregations of melanophages which accumulated free pigment granules excreted by ependymal cells into the cerebrospinal fluid. Whereas the meningeal melanophores contained oval melanosomes of various sizes, the melanosomes in the scavenger cells were all spherical, large (0.6–1.1 μm) and fairly uniform in size. Moreover, they were arranged in spherical groups which were never seen in the cytoplasm of the melanophores. The melanosomes within the cells were identical to the free melanosomes found in the cerebrospinal fluid and those which occurred within the ependymal cells in the young larva, suggesting a common origin from the egg cytoplasm. The number of the melanosomes in the melanophages increased with age. Fine cytoplasmic projections were involved in catching and engulfing the melanosomes. Some other features of the cytoplasm, e.g., large deposits of cell detritus, also indicated that the cells were macrophages. In the later stages, (48, 49) no projections were observed, but the cells were totally filled with melanosomes.  相似文献   

5.
The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of ∼1 μm. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of ∼4 μm and pair lifetime ∼5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.  相似文献   

6.
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.  相似文献   

7.
The present study concerns pancreatic beta cells from rat foetus at 18, 19 and 21 days of gestation. On micrographs, the cytoplasm of beta cells was subdivided into 3 zones: one zone corresponding roughly to the cell web, a second zone just underlying the cell web, and a third zone comprising the remaining cytoplasm. The secretory granules present in each zone were counted; in the cell web, granules fused with plasma membrane were counted separately. During later foetal stages the increase in the frequency of granule to plasma membrane fusions parallels the increase in blood insulin levels, and the total number of granules in beta cells increases in parallel with the pancreatic insulin content. Therefore, as the beta cell matures, both secretion and biosynthesis of insulin increase sharply. The observed changes in the distribution of the granules in the different zones of the cytoplasm with the foetal age suggests that the cell web controls the access of the granules to the plasma membrane. The morphometric technique used allows a direct determination, at the cellular level, of even small variations in exocytosis-mediated secretory discharge and suggests a regulatory role of the cell web.  相似文献   

8.
The results of electron microscope investigations on dermal melanophores of Rana temporaria L. during migration of pigment granules are presented. It was shown that in comparison to the previous observations dermal melanophores are flat cells without branches. Ultrastructural differences have been demonstrated in dermal melanophores during migration of pigment granules. During melanosome dispersion membrane vesicle bodies are seen in the cytoplasm to be inserted in the melanophore membrane.  相似文献   

9.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

10.
The bi-directional movement of pigment granules in frog melanophores involves the microtubule-based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin II and myosin V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150(glued) and Arp1/centractin, co-localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co-immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

11.
Using the guppy, Lebistes reticulatus, and the siluroid catfish, Parasilurus asotus , the effects of purine and pyrimidine derivatives on the movement of melanophores were studied. All the substances tested did not aggregate pigment within melanophores. Adenosine and adenine nucleotides were very effective in dispersing melanosomes within the cell, although adenine itself lacked such action. Derivatives of other purines than adenine and of pyrimidines did not disperse melanosomes. The pigment dispersion induced by adenine derivatives was specifically antagonized by methylxanthines. It was concluded that adenosine receptors are present on the melanophore membrane, which take part in the darkening reaction of fishes.  相似文献   

12.
The cortical region of the 2-cell stage egg of the gastropod Lymnaea palustris was studied by light and electron microscopy. This region includes (1) a vitelline membrane and perivitelline space which contain membrane-limited dense bodies derived from the cell surface, (2) oolemma with surface coat material and microvilli, and (3) a peripheral zone of cytoplasm (0.5-5.0 μm wide) composed of irregular vesicles, electron dense granules, and cytoplasmic microtubules. Microtubules are most abundant in the equatorial region of the egg, where they form arrays that are parallel and oblique to the egg's surface. Microtubular profiles also occur in the cortical region at the animal and vegetal poles of the egg and in the endoplasm. They may play a role in cortical segregation.  相似文献   

13.
The bi‐directional movement of pigment granules in frog melanophores involves the microtubule‐based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin  II and myosin  V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin  II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150glued and Arp1/centractin, co‐localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co‐immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

14.
During the conversion of newt iris epithelial cells into lens cells, melanosomes disappear from the cytoplasm. In this “depigmentation,” exocytosis of melanosomes is involved. The role of Ca2+ in this process has been the subject of this work. The intracellular Ca2+ concentration of cultured iris epithelial cells was increased by three methods: microinjection of 10?3, M CaCl2 into the cytoplasm, fusion of phospholipid vesicles containing 10?3, M CaCl2 with the cell membrane, and exposure to the calcium ionophore A23187. Each of these treatments caused an increase in the release of melanosomes. Further experiments suggest that cAMP stimulates exocytosis probably by liberating Ca2+ from intracellular stores.  相似文献   

15.
Selective dispersion of melanosomes was often observed after iontophoretic injection of cyclic adenosine monophosphate (AMP) from a glass microelectrode positioned in a target melanophore in frog skin (as viewed from above through a microscope), with other melanophores in the field serving as controls. Because the skin has orderly arrays of several types of closely spaced cells, it is probable that at times the microelectrode also impales cells other than melanophores. When cyclic AMP injection inside a cell resulted in dispersion of melanosomes from a perinuclear position into dendritic processes, the onset of dispersion was relatively rapid, in many cases less than 4 min (mean time of onset, 5.3 +/- 2.9 [SD] min). A much slower dispersion (mean time of onset, 19.0 +/- 5.0 min) of melanosomes was observed when the microelectrode was positioned adjacent to a melanophore, and much larger quantities of cyclic AMP were released. In addition, no changes were observed for injections of 5'-AMP or cyclic guanosine monophosphate (GMP) through electrodes positioned inside or adjacent to melanophores. Potential measurements showed that after impaling a clell, a constant transmembrane potential could often be recorded over many minutes, indicating that the membrane tends to seal around the microelectrode. The results indicate that cyclic AMP acts more rapidly on the inside of a cell than when applied outside a cell and allowed to diffuse through the plasma membrane. This study introduces a model system whereby the properties of the plasma membrane and melanocyte-stimulating hormone (MSH) receptors can be studies within a single target cell.  相似文献   

16.
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long‐term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore‐fibroblast co‐culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast‐derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane‐enclosed melanosomes in a process that was upregulated by α‐melanocyte‐stimulating hormone (α‐MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane‐proteins seemed to be of importance, as the cluster‐like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long‐term colour changes and for studies of factors that affect pigmentation.  相似文献   

17.
The detection of exocytotic fusion in patch-clamped secretory cells depends on measuring an increase in the cell membrane capacitance as new membrane is added to the plasma membrane. However, in the majority of secretory cells, secretory vesicles are too small (< 200 nm in diameter) to cause a detectable signal. We have found that incubations of normal mouse mast cells with the hydrophobic anion dipicrylamine (DPA), increases cell membrane capacitance by about three times. The large capacitive current induced by DPA was voltage-dependent, having a maximum value at -10 mV. The DPA-induced charge movement could be described by a single barrier model in which the DPA molecules move between two stable states in the bulk lipid matrix of the membrane. More importantly, the DPA treatment produced a sevenfold increase in the size of the capacitance steps observed upon the exocytotic fusion of single secretory granules. A similar amplification of DPA on the secretory vesicle capacitance was observed in a cell with larger (< or = 5 microns in diameter) or with smaller secretory granules (< 250 nm in diameter). Additionally, the increased granule membrane capacitance enlarged the transient capacitive discharge measured upon formation of a fusion pore in normal mast cell granules. Our results indicate that hydrophobic ions provide an important tool for high resolution studies of membrane capacitance.  相似文献   

18.
When the retinal pigment epithelial cells of the chick embryo are transferred to monolayer cultures, they lose their phenotypic trait-- melanin granules-- after a few days. Within the first 24 hours almost all of the melanosomes and premelanosomes are transformed into the degradative structures of the dense bodies or the melanosome complexes. Then, within a few days, these structures disappear completely from the cytoplasm. Actinomycin D, added to the culture medium during the first four hours, almost completely prevents the transformation of melanosomes and premelanosomes. The inhibition of cell proliferation, caused by the addition of colcemid, does not prevent the transformation, though the time of initiation of transformation is delayed considerably. The mechanisms of the transformation of pigment granules are discussed.  相似文献   

19.
ELECTRON MICROSCOPY OF GROWING OOCYTES OF RANA PIPIENS   总被引:16,自引:12,他引:4       下载免费PDF全文
1. In the cytoplasm of oocytes of stage Y0, prior to the appearance of yolk, one observes a few scattered profiles of endoplasmic reticulum and numerous filamentous mitochondria, usually distributed at random but sometimes clustered. As the nuclear membrane begins to bulge outward, small granules and short rods appear in the perinuclear cytoplasm and endoplasmic reticulum becomes more prominent throughout the cytoplasm. 2. Coincident with the appearance of the first yolk platelets, which are deposited in a narrow peripheral ring within the endoplasm at stage Y1, protoplasmic processes, the microvilli, push out all over the surface of the oocyte. At the same time follicle cells pull away but remain attached to the oocyte at some points through finger-like processes which interdigitate with neighboring microvilli. It is estimated that the microvilli increase the absorptive area of the surface to about thirty-five times that of a simple sphere. Just beneath the microvillous layer is the basal protoplasm of the cortex, now containing tiny granules probably synthesized from newly absorbed raw materials. Cortical granules appear and become aligned below the basal layer on the external border of the endoplasm. Both the cortical granules and the yolk platelets measure up to 1 µ in diameter at this stage. 3. By stage Y3 (yolk filling peripheral three-fourths of cytoplasm), the basal layer of the cortex is folded so that it appears in section as alternating ridges and valleys. The microvilli now extend from the summits of the cortical ridges. Small, ring-shaped granules are abundant in the cortex. Cortical granules have increased to 2 µ in diameter. 4. Yolk platelets continue to be synthesized around the cortical granules and in the subjacent endoplasm. The largest platelets measured in the interior cytoplasm at stage Y4 (cytoplasm filled with yolk) were 3.7 µ wide by 5.8 µ long. Pigment granules increase in size from 0.15 µ in diameter at stage Y3 to 0.30 µ in diameter at stage Y4.  相似文献   

20.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule- and actin-dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3-phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin-related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin-mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down-regulating actin-dependent melanosome movement by noradrenaline. Data from immuno-electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule- and actin-mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号