首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The results of electron microscope investigations on dermal melanophores of Rana temporaria L. during migration of pigment granules are presented. It was shown that in comparison to the previous observations dermal melanophores are flat cells without branches. Ultrastructural differences have been demonstrated in dermal melanophores during migration of pigment granules. During melanosome dispersion membrane vesicle bodies are seen in the cytoplasm to be inserted in the melanophore membrane.  相似文献   

3.
4.
Major signaling cascades have been shown to play a role in the regulation of intracellular transport of organelles. In Xenopus melanophores, aggregation and dispersion of pigment granules are regulated by the second messenger cyclic AMP through the protein kinase A (PKA) signaling pathway. PKA is bound to pigment granules where it forms complexes with molecular motors involved in pigment transport. Association of PKA with pigment granules occurs through binding to A-kinase-anchoring proteins (AKAPs), whose identity remains largely unknown. In this study, we used mass spectrometry to examine an 80 kDa AKAP detected in preparations of purified pigment granules. We found that tryptic digests of granule protein fractions enriched in the 80 kDa AKAP contained peptides that corresponded to the actin-binding protein moesin, which has been shown to function as an AKAP in mammalian cells. We also found that recombinant Xenopus moesin interacted with PKA in vitro , copurified with pigment granules and bound to pigment granules in cells. Overexpression in melanophores of a mutant moesin lacking conserved PKA-binding domain did not affect aggregation of pigment granules but partially inhibited their dispersion. We conclude that Xenopus moesin is an AKAP whose PKA-scaffolding activity plays a role in the regulation of pigment dispersion in Xenopus melanophores.  相似文献   

5.
6.
The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists.  相似文献   

7.
Summary Pigment granules (PGs) are embeded in the cortex of embryos of the Japanese sea urchins,Hemicentrotus pulcherrimus and Anthocidaris crassispina. PGs in the cortex actively retreated from the vegetal pole area at the 4-cell stage and then a notable PG-distribution gradient formed along the egg axis (the polar redistribution of PGs). The polar redistribution of PGs in the cortex occurred at the same time after fertilization even in solutions of microtubule disrupting reagents such as Colcemid, vinblastine sulfate or griseofulvin. Consequently, the polar redistribution of PGs was not associated with the microtubules. However, the polar redistribution of PGs was interrupted in seawater containing cytochalasin B (CB), dithiothreitol (DTT) or tetracaine, and the distribution pattern of PGs in the cortex was definitely disturbed. Moreover, CB, DTT and tetracaine altered the division pattern of vegetal blastomeres at the 4th cleavage which is normally unequal so that all the blastomeres divided equally. Microtubule disrupting reagents did not have such an effect on the cleavage pattern. Thus the cortical movement along the egg axis reflected by the polar redistribution of PGs seems to correlate with the micromere formation.  相似文献   

8.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

9.
Desnitskiĭ AG 《Ontogenez》2004,35(3):165-170
A review of the recent published data on ontogenesis of direct developing and marsupial frogs. The development of these representatives of anuran amphibians seems to be evolutionary advanced and considerably differs from the development of species traditionally used in amphibian embryology.  相似文献   

10.
The cortical bones of mammals, birds, and reptiles are composed of a complex of woven bone and lamellar bone (fibrolamellar bone) organized into a variety of different patterns; however, it remains unclear whether amphibians possess similar structures. Importantly, to understand the evolutionary process of limb bones in tetrapods, it is necessary to compare the bone structure of amphibians (aquatic to terrestrial) with that of amniotes (mostly terrestrial). Therefore, this study compared the cortical bones in the long bones of several frog species before and after metamorphosis. Using micro-computed tomography (CT), we found that the cortical bones in the fibrolamellar bone of Xenopus tropicalis (Pipoidea superfamily) and Lithobates catesbeianus (Ranoidea superfamily) froglets are dense, whereas those of Ceratophrys cranwelli (Hyloidea superfamily) are porous. To clarify whether these features are common to their superfamily or sister group, four other frog species were examined. Histochemical analyses revealed porous cortical bones in C. ornata and Lepidobatrachus laevis (belonging to the same family, Ceratophryidae, as C. cranwelli). However, the cortical bones of Dryophytes japonicus (Hylidae, a sister group of Ceratophryidae in the Hyloidea superfamily), Microhyla okinavensis (Microhylidae, independent of the Hyloidea superfamily), and Pleurodeles waltl, a newt as an outgroup of anurans, are dense with no observed cavities. Our findings demonstrate that at least three members of the Ceratophryidae family have porous cortical bones similar to those of reptiles, birds, and mammals, suggesting that the process of fibrolamellar bone formation arose evolutionarily in amphibians and is conserved in the common ancestor of amniotes.  相似文献   

11.
12.
Locomotory speed correlates with muscle mass (determining force and stride rate), limb length (stride rate and distance), and laterally compressed body trunk (force and stride distance). To delineate generalization of the locomotory-morphometric relationships specifically in anuran amphibians, we investigated take-off speed and the three morphological variables from seven species, Rana nigromaculata, R. rugosa, and Bombina orientalis, Eleuthrodectilus fitzingeri, E. diastema, Bufo typhonius, Colostethus flotator and Physalaemus pustulosus. The fastest jumper E. fitzingeri (3.41 m s(-1)) showed 2.49-fold greater speed than the slowest B. typhonius. Take-off speed correlated well with both thigh muscle mass relative to body mass and hindlimb length relative to snout-vent length (HL/SVL), but poorly correlated with the inter-ilial width relative to SVL. The best morphological predictor was HL/SVL (speed=-3.28+3.916 HL/SVL, r=0.968, P<0.0001), suggesting that anuran take-off speed is portrayed well with high gear and acceleration distance characterized by hindlimbs.  相似文献   

13.
14.
Oildroplets in the eyes of terrestrial vertebrates are spherical cellular organelles that stain for lipids, have no discernible internal structure, and often contain carotenoids and possibly other chemicals. A survey of 97 species of anuran amphibians (frogs and toads) revealed that all species of 16 families surveyed possessed yellow oildroplets of varying size in the cells of the pigment epithelium, except for three species that appear to have secondarily lost them during evolution. Furthermore, 25 species of six families also possess colorless oildroplets at the distal end of the inner segments of single cones and principal cones of the double-cone system; two species of the Ranidae appear to have secondarily lost such retinal oildroplets. Every species possesses epithelial or retinal oildroplets or both. Lastly, small oildroplet-like inclusions were discovered in the red blood cells of two species. All of Walls' ('42) summary generalizations about anuran oildroplets are incorrect: oildroplets are not restricted to the Ranidae, are not yellow when found in the cones, and do not correlate with photoactic behavior in 87 species. Evidence is reviewed suggesting that the primary function of anuran oildroplets is chemical storage, perhaps related to the visual pigment cycle. Oildroplets in the cones may additionally act as filters of ultraviolet radiation.  相似文献   

15.
Summary The dermal melanophores ofFundulus heteroclitus L. have been investigated by light and electron microscopy with the purpose of revealing the mechanisms controlling pigment migration. As predicted by earlier studies, the nerve endings of a double innervation were found adjacent to and in synaptic relation to the melanophore surface. Not expected were the large number of small pits or invaginations present in the cell surface. These appear identical to the so-called micropinocytotic vesicles found generally in cells of the vascular endothalium and smooth muscle. In chromatophores they are more reasonably interpreted as receptor sites for neurohormones than as uptake and transport mechanisms.Observations made on the kinetics of pigment migration within the processes of these melanophores indicate that the granules move along relatively fixed channels arranged parallel to the long axes of the processes. Examined at fine structure levels, the zones of cytoplasm around these channels are found to be populated by microtubules about 225 Å in diameter aligned parallel to the direction of pigment movement. These long slender elements are present in the processes regardless of whether the melanin is concentrated in the cell center or dispersed. It is reasoned from these and other observations that the microtubules function as cytoskeletal elements which help maintain the extended form of the melanophore arms and at the same time define the channels in which the pigment moves. The possible role of the tubule in generating the motive force for pigment migration is discussed.Supported by US Public Health Service Training Grant, 5 TIGM-707.  相似文献   

16.
17.
The present study was designed to explore systematically the midbrain of unanesthetized, decerebrate anuran amphibians (bullfrogs), using chemical and electrical stimulation and midbrain transections to identify sites capable of exciting and inhibiting breathing. Ventilation was measured as fictive motor output from the mandibular branch of the trigeminal nerve and the laryngeal branch of the vagus nerve. The results of our transection studies suggest that, under resting conditions, the net effect of inputs from sites within the rostral half of the midbrain is to increase fictive breathing frequency, whereas inputs from sites within the caudal half of the midbrain have no net effect on fictive breathing frequency but appear to act on the medullary central rhythm generator to produce episodic breathing. The results of our stimulation experiments indicate that the principal sites in the midbrain that are capable of exciting or inhibiting the fictive frequency of lung ventilation, and potentially clustering breaths into episodes, appear to be those primarily involved in visual and auditory integration, motor functions, and attentional state.  相似文献   

18.
The mode of colonization of the lateral line melanophore band of the zebrafish, Brachydanio rerio, by the second wave of melanophores has been investigated. This stripe forms in two consecutive stages. First, there is an initial migration and reorientation of pigment cells in an anteroposterior wave into the site to form an interrupted stripe. Following this, a round of melanophores differentiates directly at the site and fills in the gaps between the initial cells. An analysis of the distributions of initial and second wave melanophores along the stripe site has shown that both groups of cells are selective as to localization. Initial wave melanophores colonize more anterior somite areas than do second wave melanophores. However, both groups of cells exhibit preferential colonization of the same anterior sites. It is suggested that second wave melanophores attempt to colonize the same somite areas of the stripe as the initial wave of melanophores but are forced to move to more posterior locations due to the presence of initial wave melanophores anteriorly. Observations were also made on later stages of development of the lateral line melanophore band. These melanophores retain the ability to migrate. Some of them reorient out onto the flank and contribute to the juvenile flank pigment pattern.  相似文献   

19.
20.
1. A histochemical study using myosin ATPase, succinate dehydrogenase and alpha-glycerophosphate dehydrogenase reactions and a morphometric analysis with image analyser, was carried out in sartorius and gastrocnemius muscles of two anuran species, Rana perezi and Bufo calamita, that show different locomotor activities. 2. Four types of muscle fiber were found. There were interspecific variations in their proportions, with a predominance of oxidative muscle fibers in Bufo calamita. 3. These results agree with those obtained previously for the metabolic profile of several tissues from both species and point to a clear metabolic basis for the differences in locomotor activities between these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号