首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatin-associated and cytosolic ornithine decarboxylase (ODC) of corn and bean plants was differentially increased by four growth regulators, gibberellic acid, benzyladenine, -indoleacetic acid and abscisic acid. The increases occasioned by these substances was more profound in the roots, especially in the chromatin fraction. The maximal increase of chromatin-associated ODC activity was four- to five-fold, while the increase of cytosolic ODC activity was two-fold.  相似文献   

2.
Protein extracted from root and leaf tissue of the dicotyledonous plants pea (Pisum sativum) and broad bean (Vicia faba) and the monocotyledonous plants wheat (Triticum aestivum) and barley (Hordeum vulgare) were shown to catalyze the incorporation of biotin-labeled cadaverine into microtiter-plate-bound N′,N′-dimethylcasein and the cross-linking of biotin-labeled casein to microtiter-plate-bound casein in a Ca2+-dependent manner. The cross-linking of biotinylated casein and the incorporation of biotin-labeled cadaverine into N′,N′-dimethylcasein were time-dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2-week growth period in both the roots and leaves of pea. The product of transglutaminase's protein-cross-linking activity, ε-(γ-glutamyl)-lysine isodipeptide, was detected in root and shoot protein from pea, broad bean, wheat, and barley by cation-exchange chromatography. The presence of the isodipeptide was confirmed by reversed-phase chromatography. Hydrolysis of the isodipeptide after cation-exchange chromatography confirmed the presence of glutamate and lysine.  相似文献   

3.
Effect of arsenic on some physiological parameters in bean plants   总被引:6,自引:0,他引:6  
The objective of the study was to investigate the effect of different arsenic concentrations on some physiological parameters of bean (Phaseolus vulgaris L.) cultivars Plovdiv 10 and Prelom in the early growth phases. Seedlings, grown in sand with Hoagland-Arnon nutrient solution in a climatic box, were treated with 0, 2, 5 mg(As) dm–3 as Na3AsO4 (pH 5.5). After 5 d of As treatment, the changes in leaf gas-exchange, water potential, chlorophyll and protein contents, peroxidase activity and lipid peroxidation in roots were recorded. Physiological analysis showed a minor negative effect of arsenic at concentration 2 mg(As) dm–3, but at the higher dosage of 5 mg(As) dm–3 growth, leaf gas-exchange, water potential, protein content and biomass accumulation were reduced in both cultivars. The peroxidase activity and lipid peroxidation increased considerably at 5 mg(As) dm–3, which is a typical reaction of the plants to a presence of oxidative stress.  相似文献   

4.
The activities of carboxymethylcellulase and xylanase in the higher basidial fungusCerrena unicolorgrown in avicel-containing medium reached 1.95 and 1.50 units per mg protein, respectively, whereas in mannitol-containing medium they ranged from 0.02 to 0.04 units per mg protein. The activity of fungal -glucosidase depended on the carbon source in the culture medium and ranged from 2.1 units per mg protein in the presence of mannitol to 17.3 units per mg protein in the presence of avicel. In contrast to polysaccharides, easily metabolizable substrates (cellobiose, mannitol, and glucose) provided the highest rates of secretion of laccase (52.7–123.5 ncat per mg protein) and ligninase (22–106 units per mg protein). The addition of tangerine pomace (TP), a substrate enriched with aromatic compounds, to the culture medium caused an increase in the rate of biosynthesis of laccase and ligninase to 862 ncat/ ml and 557 units per ml, respectively. Aromatic compounds such as p-xylidine and veratric aldehyde increased the laccase activity of C. unicolor IBB 62 from 7.9 to 23.6 and 18.3 ncat per mg protein, respectively. Veratryl alcohol caused a sevenfold increase in the activity of Mn-dependent peroxidase in the culture medium.  相似文献   

5.
We examined the relationship between ornithine decarboxylase (ODC) and growth and differentiation in the developing rat exocrine pancreas. The ODC activity profile showed 2 distinct stages of increases with the first occurred at 14–16 days of age, and a second at 21–23 days of age. Growth parameters evaluated as gains in tissue mass, protein and DNA content in the pancreas indicated a low growth rate soon after birth with a transition to a much more rapid growth rate around the age of 20–21 days, a time corresponded to the second rise in ODC activity. Differentiation parameters evaluated as the accumulation of trypsinogen, amylase and lipase showed different temporal changes. While the rate of accumulation of all three enzymes was relatively low following birth, a rapid rate of accumulation of trypsinogen and amylase started around 15–16 days, a time corresponding to the first rise in ODC activity. Lipase, however, did not show an increase in its accumulation until around age 20 days. These results indicate that a rise in ODC activity is closely associated with growth and differentiation in the developing rat pancreas. To further examine this issue, the steady state levels of ODC mRNA in developing rats were evaluated by Northern blots probed with an ODC cDNA. The developmental profile of ODC mRNA showed a broad peak with a pronounced shoulder occurring at 10 days of age. A higher peak was reached around 20 days of age, then dropped precipitously to a very low level at the age of 24 days. This temporal changes in the level of ODC mRNA show good relationship to the changes in ODC activity suggesting that the control of ODC expression occurs at least in part at the pre-translational level.  相似文献   

6.
Ornithine decarboxylase (ODC; EC 4.1.1.17) and its antizyme (Az), a protein non-competitive inhibitor of ODC, form a complex in germinated barley ( Hordeum vulgare L. cv. Georgia) seeds. The ODC-Az complex is very stable, but dissociates by treatment with 10% ammonium sulfate. ODC-Az complex is present in the cytosol, and it can also be extracted from germinated barley seed chromatin with 2 M NaCl.  相似文献   

7.
Young corn, pea and rapeseed plants were exposed to compressed synthetic air containing varying COS concentrations. The results suggest that COS exchange depends highly on the ambient COS mixing ratios. Ambient COS mixing ratios larger than 150 pptv resulted in a deposition of COS to all plant species studied. Significant (confidence level 95%) COS emission was only detected from rapeseed leaves at COS mixing ratios lower than 90 pptv. We computed COS compensation points around 90 (57–135) pptv and 144 (0–328) pptv COS for rapeseed and corn. For both plant species we found a close correlation between the photosynthetic CO2 assimilation and the COS uptake. In contrast to the gas exchange studies with corn and rapeseed, experiments with pea plants revealed neither a change in response to increased COS concentrations of between 350 and 900 pptv COS nor any correlation with photosynthesis. However, for all three plants studied we found indications that COS is taken up preferentially over CO2 under normal ambient conditions.  相似文献   

8.
Saturation and Utilization of Nitrate Pools in Pea and Sugar Beet Leaves   总被引:1,自引:0,他引:1  
The critical periods in the saturation of pea and sugar beet leaves with nitrate absorbed by roots were discriminated. In peas, during the first 14 h, all nitrate penetrating leaf cells was concentrated in the cytosol (metabolic pool). During the second period (14–62 h), nitrate began to flow into the vacuole (storage pool), and the filling of the metabolic pool continued. Metabolic pool was saturated by the end of this period (62 h). During the third period (62–110 h), further nitrate accumulation in the cell occurred because of expanding of the storage pool. Its saturation (similarly as total cell saturation) commenced 86 h after the start of nitrate uptake. In sugar beet leaves, both metabolic and storage nitrate pools were saturated by the end of the first period (14 h), and the sizes of these pools did not change during the second period (14–86 h). When pea plants were transferred to the nitrate-free medium, nitrate efflux began from the storage pool until its complete exhausting after 3 days. In sugar beet leaves, nitrate was still present in the storage pool 4 days after plant transfer to the nitrate-free medium. In both crops, nitrate export from the storage pool was aimed at the maintenance of the optimum nitrate concentration in the metabolic pool and, thus, at the maintenance of nitrate reductase activity. A functional diversity of nitrate compartmentation in the cells of various plant species is discussed.  相似文献   

9.
The effects of chilling on ethylene production by leaf discs and whole plants of bean (chilling-sensitive) and pea (chilling-tolerant) were studied. When pea or bean leaf discs were excised and incubated at 25°C, transient increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation were observed. Both pea and bean discs kept at 5°C evolved little ethylene, but levels of ACC increased in pea discs and not in bean discs. When discs of either species were chilled at 5°C immediately after excision and then transferred to 25°C 9 h later, increases in their ACC levels and ethylene production rates were observed. Discs were also incubated at 25°C for 12 h to allow excision-induced ethylene production to subside and then chilled at 5°C. Nine hours later, these discs were transferred to 25°C, and an increase in ethylene production was observed. These data indicate that chilling suppresses excision-induced ethylene production and enhances the production of ethylene after transfer to 25°C. Chilling of whole plants resulted in increased production of ethylene and ACC in the chilling-sensitive bean but not in the chilling-tolerant pea. Treatment of bean plants with the ethylene antagonists silver thiosulfate, norbornadiene, or aminooxyacetic acid, or of pea plants with ethylene, did not affect the appearance of chilling injury symptoms, indicating that ethylene does not induce injury symptoms and may not have an adaptive role in chilling stress.  相似文献   

10.
We have purified a 73 kDa protein from the cytosolic fraction of mung bean seeds. It comprises 0.5–1% of the total protein in seeds. This purified protein is a bona fide hsc70 on the basis of several lines of evidence. First, antibodies against bovine brain hsc70 cross-react with the purified 73 kDa protein. Second, the purified protein comigrates on two-dimensional gels with one of the heat-inducible hsc70s in mung bean seedlings. Third, similar to other hsc70 species, the purified 73 kDa protein has a high affinity for ATP. Finally, the hydrolysis of ATP by the purified protein can be stimulated by peptides; ATPase activity increases from 40 nmol/h to 165 nmol/h per mg of protein. The purified mung bean hsc70 autophosphorylates at a substoichiometric level. Moreover, the amount of this hsc70 species diminishes while new species of hsc70s appear after germination, suggesting that the expressionof hsc70 in mung bean is subject to developmental regulation.  相似文献   

11.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

12.
Vinca alkaloids were used to study the role of retrograde axon transport (RT) in activating neuron perikaryal repair response to nerve transection. Mouse lumbar dorsal root ganglia (DRG) (L4-L6) were excised 48 hours after unilateral transection of the sciatic nerve and ornithine decarboxylase (ODC) activity determined. ODC activity in DRG ipsilateral to nerve transection was increased 10–20 fold over contralateral values. Typical ODC activities in ipsilateral and contralateral DRG samples were 6.18±1.4 and 0.31±0.09 pmol14CO2 released/h/3DRG, respectively. Systemic administration of single doses of either vincristine (1 mg/kg) or vinblastine (5 mg/kg) immediately prior to axotomy attenuated ODC induction in ipsilateral DRG by 39% and 47%, respectively. A direct inhibition of ODC activity in the DRG appears unlikely since only high concentrations of vinblastine (0.5–1.0 mM) were able to inhibit ODC activity in vitro. We suggest vinca alkaloids inhibit ODC induction as a consequence of distupting retrograde axonal transport. Interruption of this intracellular communication mechanism may be etiologically linked to the distal axon degeneration which follows repetitive exposure to vinca alkaloids and other agents that induce toxic axonal neuropathy.  相似文献   

13.
The effects of host plant and dietary cucurbitacin on the growth of larval southern corn rootworm (SCR), Diabrotica undecimpunctata howardi Barber (Chrysomelidae: Luperini), were investigated. SCR were reared on four hosts: corn, Zea mays; peanuts, Arachis hypogaea; and two squash varieties, Cucurbita pepo cv. Ambassador (containing cucurbitacin D (0.08 mg g–1 fr.wt.) = bitter), and C. pepo cv. Early Yellow Crookneck (lacking cucurbitacin = non-bitter). Larval growth was significantly greater on corn and peanuts than on either squash variety. After four weeks, adults had emerged from corn and peanut plants, while squash-reared larvae had not yet entered the pupal stage. There was no difference in larval growth on the two varieties of squash. Primary metabolite measurements showed no nutritional differences between the two squash varieties. Artificial diet experiments were used to test the effect of three concentrations of cucurbitacin D (0.0, 0.1, and 0.6 mg g–1 diet) on growth of larval SCR. Larvae reared on diet containing 0.6 mg g–1 cucurbitacin weighed significantly less than larvae reared on diet containing 0.1 mg g–1 or no cucurbitacin after 10 d. No significant difference in growth was measured between the 0.1 mg g–1 diet and the 0.0 mg g–1 diet. Results are discussed relative to theories about the relationship between diabroticites and cucurbitacins.  相似文献   

14.
This study presents a novel way of enhancing plant growth through the use of a non-petroleum based product. We report here that exposing either roots or seeds of multicellular plants to extremely low concentrations of dissolved hydrogen sulfide at any stage of life causes statistically significant increases in biomass including higher fruit yield. Individual cells in treated plants were smaller (∼13%) than those of controls. Germination success and seedling size increased in, bean, corn, wheat, and pea seeds while time to germination decreases. These findings indicated an important role of H2S as a signaling molecule that can increase the growth rate of all species yet tested. The increased crop yields reported here has the potential to effect the world''s agricultural output.  相似文献   

15.
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.  相似文献   

16.
Nitrate-fed and dark-stressed bean (Phaseolus vulgaris) and pea (Pisum sativum) plants were used to study nodule senescence. In bean, 1 d of nitrate treatment caused a partially reversible decline in nitrogenase activity and an increase in O2 diffusion resistance, but minimal changes in carbon metabolites, antioxidants, and other biochemical parameters, indicating that the initial decrease in nitrogenase activity was due to O2 limitation. In pea, 1 d of dark treatment led to a 96% decline in nitrogenase activity and sucrose, indicating sugar deprivation as the primary cause of activity loss. In later stages of senescence (4 d of nitrate or 2–4 d of dark treatment), nodules showed accumulation of oxidized proteins and general ultrastructural deterioration. The major thiol tripeptides of untreated nodules were homoglutathione (72%) in bean and glutathione (89%) in pea. These predominant thiols declined by approximately 93% after 4 d of nitrate or dark treatment, but the loss of thiol content can be only ascribed in part to limited synthesis by γ-glutamylcysteinyl, homoglutathione, and glutathione synthetases. Ascorbate peroxidase was immunolocalized primarily in the infected and parenchyma (inner cortex) nodule cells, with large decreases in senescent tissue. Ferritin was almost undetectable in untreated bean nodules, but accumulated in the plastids and amyloplasts of uninfected interstitial and parenchyma cells following 2 or 4 d of nitrate treatment, probably as a response to oxidative stress.  相似文献   

17.
Since phosphorylation of chromosomal proteins by cyclic AMP-dependent protein kinases (EC 2.7.1.37) enhances template activity of adrenal medulla chromatin (9), we have studied the properties and regulation of protein kinases isolated from chromaffin cell cytosol and nuclei. DEAE-cellulose chromatography revealed three peaks of kinase activity in the nucleus (nPKI, nPKII, nPKIII) and two in the cytosol (cPKI, cPKII). The three nuclear enzymes, as well as cPKII, did not require cyclic AMP to express their catalytic activity, nPKI and nPKIII preferred acidic substrates as PO 4 3– acceptors, while nPKII and the cytosol enzymes preferred basic PO 4 3– acceptors. Enzyme recombination experiments using protein kinase regulatory subunits from cytosol suggested that cPKII was the catalytic subunit of cPKI. In contrast, the nuclear enzymes were not catalytic subunits of the cyclic AMP-dependent protein kinase in the cytosol (cPKI). Only the cytosol protein kinases could be inhibited by endogenous heat-stable protein kinase inhibitors. The nuclear and cytosol cyclic AMP-independent protein kinases were distinguishable on the basis of their sedimentation constants as well as Mg2+ and Mn2+ requirements.  相似文献   

18.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

19.
Keith Dudley  D. H. Northcote 《Planta》1979,146(4):433-440
Total RNA was extracted from fast growing suspension cells of bean, the mRNA was translated and the products of protein synthesis analysed by gel electrophoresis. Actinomycin D (20 g ml–1) added to the cultures 12 h before the induction of phenylalanine ammonia-lyase (PAL) activity by naphthylacetic acid (NAA) (1 mg/l) and kinetin (0.2 mg/l) failed to prevent the increased activity of the enzyme usually produced by this ratio of the plant growth hormones. PAL was isolated and purified from suspension cultured bean cells. The purified enzyme ran as a single band on polyacrylamide gel electrophoresis. The protein translated from RNA prepared from induced and non-induced cells was separated by gel electrophoresis and the bands of protein on the gels were compared. There was no evidence for an increase in the amount of PAL synthesised in vitro from the mRNA of induced cells even though these had 5 times the amount of activity of the enzyme compared with that of the non-induced cells. The results indicate that the induction of PAL activity is not immediately preceeded by an increase in the synthesis of PAL-mRNA by the cells. The control of the activity of the enzyme is discussed with respect to this finding.Abbreviations PAL phenylalanine ammonia-lyase - NAA 3naphthylacetic acid - DEAE Diethylamino ethyl - EDTA Ethylenediamine tetraacetate - SDS Sodium dodecyl sulphate  相似文献   

20.
Faba bean (Vicia faba L. var. minor cv. Alborea) and pea (Pisum sativum L. cv. Lincoln) plants, inoculated with Rhizobium leguminosarum biovar. viciae strain GRA19, were treated with salt (100 mM NaCl) and/or nitrate (8 mM KNO3) to test whether plants grown with inorganic-nitrogen are more tolerant to salinity than plants entirely reliant upon fixed nitrogen. According to the growth inhibition recorded, pea plants dependent on dinitrogen fixation proved more tolerant to salt stress than those N-fertilized, in contrast to results obtained for faba bean plants. This study therefore confirms that plants dependent on nitrogen fixation are not always more sensitive to salinity than are N-fertilized plants. Nitrate addition did not reduce the specific nitrogenase activity in pea, but did in faba bean. However, nodulation was inhibited in both legumes. The specific nitrogenase activity was more affected by salt treatment in N-fertilized plants for both legumes. The activity of the enzymes mediating ammonium assimilation in nodules (GS, NADH-GOGAT) was inhibited by salt stress both in N-fixing and in N-fertilized pea and faba bean plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号