首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Central chemoreceptors are widespread within the brain stem. We suggest that their function at some sites may vary with the state of arousal. In this study, we tested the hypothesis that the function of chemoreceptors in the retrotrapezoid nucleus (RTN) varies with sleep and wakefulness. In unanesthetized rats, we produced focal acidification of the RTN by means of a microdialysis probe (tip containing the semipermeable membrane = 1-mm length, 240-microm diameter, and 45-nl volume). With the use of a dialysate equilibrated with 25% CO(2), the tissue pH change (measured in anesthetized animals) was 1) limited to within 550 microm of the probe and, 2) at the probe tip, was equivalent to that observed with end-tidal PCO(2) of 63 Torr. This focal acidification of the RTN increased ventilation significantly by 24% above baseline, on average, in 13 trials in seven rats only during wakefulness. The effect was entirely due to an increase in tidal volume. During sleep defined by behavioral criteria, ventilation was unaffected, on average, in 10 trials in seven rats. During sleep, the chemoreceptors in the RTN appear to be inactive, or, if active, the respiratory control system either is not responding or is responding with very low gain. Because ventilation is increased during sleep with all central chemoreceptor sites stimulated via systemic CO(2) application, other central chemoreceptor locations must have enhanced effectiveness.  相似文献   

2.
It has been hypothesized that regulatory control in the respiratory system is state dependent. According to this view respiratory instability during sleep onset is a consequence of repeated fluctuations in arousal state. However, these speculations are based primarily on measurements during stable sleep, not during sleep onset itself. The aim of the present study was to assess changes in ventilation and gas tensions during sleep onset as a function of arousal state. Twenty-one subjects (12 males and 9 females, mean age 20 yr) were assessed over an average of 11.3 sleep onsets. The subject's state was classified as alpha, theta, body movement, or stage 2 sleep, and expiratory tidal volume, minute ventilation, respiratory rate, and end-tidal CO2 and O2 were measured by means of a face mask, valve, and pneumotachograph on a breath-by-breath basis. Respiratory instability during sleep onset was found to be a result of two factors. The first factor was a between-state effect in which transitions from alpha to theta were associated with falls, and from theta to alpha with increases, in ventilation. The magnitude of the change was a positive function of metabolic drive at the time of the state change (as indicated by alveolar PCO2 and PO2 levels). The second was a within-state effect in which ventilation fell during consecutive alpha breaths and increased during consecutive theta breaths. These changes were due to the influence of the relative hyperventilation of the alpha state and the relative hypoventilation of the theta state on metabolic drive.  相似文献   

3.
Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Arousal from sleep is associated with elevated cardiac and respiratory activity. It is unclear whether this occurs because of homeostatic mechanisms or a reflex activation response associated with arousal. Cardiorespiratory activity was measured during spontaneous arousals from sleep in subjects breathing passively on a ventilator. Under such conditions, homeostatic mechanisms are eliminated. Ventilation, end-tidal PCO2, mask pressure, diaphragmatic electromyograph, heart rate, and blood pressure were measured in four normal subjects under two conditions: assisted ventilation and a normal ventilation control condition. In the control condition, there was a normal, sleep-related fall in ventilation and rise in end-tidal PCO2. Subsequently, at an arousal, there was an increase in respiratory and cardiac activity. In the ventilator condition, a vigorous cardiorespiratory response to a spontaneous arousal from sleep remained. These results indicate that sleep-related respiratory stimuli are not necessary for the occurrence of elevated cardiorespiratory activity at an arousal from sleep and are consistent with the hypothesis that such activity is at least in part due to a reflex activation response.  相似文献   

5.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

6.
ABSTRACT: INTRODUCTION: We were able to treat a patient with acute exacerbation of chronic obstructive pulmonary disease who also suffered from sleep-disordered breathing by using the average volume-assured pressure support mode of a Respironics V60 Ventilator (Philips Respironics: United States). This allows a target tidal volume to be set based on automatic changes in inspiratory positive airway pressure. This removed the need to change the noninvasive positive pressure ventilation settings during the day and during sleep. The Respironics V60 Ventilator, in the average volume-assured pressure support mode, was attached to our patient and improved and stabilized his sleep-related hypoventilation by automatically adjusting force to within an acceptable range. CASE PRESENTATION: Our patient was a 74-year-old Japanese man who was hospitalized for treatment due to worsening of dyspnea and hypoxemia. He was diagnosed with acute exacerbation of chronic obstructive pulmonary disease and full-time biphasic positive airway pressure support ventilation was initiated. Our patient was temporarily provided with portable noninvasive positive pressure ventilation at night-time following an improvement in his condition, but his chronic obstructive pulmonary disease again worsened due to the recurrence of a respiratory infection. During the initial exacerbation, his tidal volume was significantly lower during sleep (378.9 +/- 72.9mL) than while awake (446.5 +/- 63.3mL). A ventilator that allows ventilation to be maintained by automatically adjusting the inspiratory force to within an acceptable range was attached in average volume-assured pressure support mode, improving his sleep-related hypoventilation, which is often associated with the use of the Respironics V60 Ventilator. Polysomnography performed while our patient was on noninvasive positive pressure ventilation revealed obstructive sleep apnea syndrome (apnea-hypopnea index = 14), suggesting that his chronic obstructive pulmonary disease was complicated by obstructive sleep apnea syndrome. CONCLUSION: In cases such as this, in which patients with severe acute respiratory failure requiring full-time noninvasive positive pressure ventilation therapy also show sleep-disordered breathing, different ventilator settings must be used for waking and sleeping. On such occasions, the Respironics V60 Ventilator, which is equipped with an average volume-assured pressure support mode, may be useful in improving gas exchange and may achieve good patient compliance, because that mode allows ventilation to be maintained by automatically adjusting the inspiratory force to within an acceptable range whenever ventilation falls below target levels.  相似文献   

7.
The sleeping state places unique demands on the ventilatory control system. The sleep-induced increase in airway resistance, the loss of consciousness, and the need to maintain the sleeping state without frequent arousals require the presence of complex compensatory mechanisms. The increase in upper airway resistance during sleep represents the major effect of sleep on ventilatory control. This occurs because of a loss of muscle activity, which narrows the airway and also makes it more susceptible to collapse in response to the intraluminal pressure generated by other inspiratory muscles. The magnitude and timing of the drive to upper airway vs. other inspiratory pump muscles determine the level of resistance and can lead to inspiratory flow limitation and complete upper airway occlusion. The fall in ventilation with this mechanical load is not prevented, as it is in the awake state, because of the absence of immediate compensatory responses during sleep. However, during sleep, compensatory mechanisms are activated that tend to return ventilation toward control levels if the load is maintained. Upper airway protective reflexes, intrinsic properties of the chest wall, muscle length-compensating reflexes, and most importantly chemoresponsiveness of both upper airway and inspiratory pump muscles are all present during sleep to minimize the adverse effect of loading on ventilation. In non-rapid-eye-movement sleep, the high mechanical impedance combined with incomplete load compensation causes an increase in arterial PCO2 and augmented respiratory muscle activity. Phasic rapid-eye-movement sleep, however, interferes further with effective load compensation, primarily by its selective inhibitory effects on the phasic activation of postural muscles of the chest wall. The level and pattern of ventilation during sleep in health and disease states represent a compromise toward the ideal goal, which is to achieve maximum load compensation and meet the demand for chemical homeostasis while maintaining sleep state.  相似文献   

8.
Caffeine is widely used for the treatment of apnea in premature neonates. However, the localization of caffeine's target site (central nervous system and/or peripheral chemoreceptors) is not well defined, especially for sleeping neonates whose sleep stages interact with respiratory control. The aim of this study was to assess the activity of the peripheral chemoreceptors in relation to sleep stages in premature neonates treated (or not) with caffeine for idiopathic apnea. Peripheral chemoreceptor activity was assessed in 22 neonates (postconceptional age of 36 +/- 1 wk with birth weights ranging from 790 to 1,910 g) by performing a 30-s hyperoxic test during active and quiet sleep. Eleven neonates received caffeine treatment (4.0 +/- 0.5 mg.kg(-1).day(-1)) and 11 served as controls. For all neonates, the decrease in minute ventilation observed during hyperoxia was greater during active than during quiet sleep. Neonates receiving caffeine showed a significantly greater decrease in ventilation during hyperoxia in both sleep stages, compared with controls (caffeine; -29.7 +/- 12.8% vs. control; -22.0 +/- 7.4%; F(1,15) = 4.6, P = 0.04). We conclude that caffeine administration increases the effectiveness of chemoreceptor activity. Because sleep stage durations were not affected by the treatment, it is likely that the decrease in apneic episodes typically observed with caffeine therapy is only related to respiratory processes and is independent of the sleep stage organization.  相似文献   

9.
The quantification of respiratory variability may provide insight into the integrative control of breathing. To test the hypothesis that sleep and/or increased chemical drive modifies respiratory variability, six male adult Sprague-Dawley rats were instrumented with diaphragm electromyographic (EMG) electrodes and exposed to 0, 2.5, and 5.0% CO2 with a balance of room air during wakefulness and behaviorally determined sleep. Respiratory interval (Ttot), peak diaphragm EMG, and ventilation index (peak diaphragm EMG/Ttot) were calculated for 1,024 sequential breaths. The variability of breathing was quantified with a measurement of signal complexity, the approximate entropy, and two autocorrelation measurements, the autoregressive power spectrum slope and the detrended fluctuation analysis slope. Elevated chemical drive and/or sleep significantly modulated the variability of ventilation index and Ttot. There were also significant interactions between state and CO2 drive in all respiratory parameters. We conclude that state (sleep or wakefulness) and increased chemical drive affect respiratory variability differentially.  相似文献   

10.
To assess the effect of sleep on airflow resistance and patterns of ventilation in asthmatic patients with nocturnal worsening, 10 adult subjects (6 asthmatic patients with nocturnal worsening, 4 normal controls) were monitored overnight in the sleep laboratory on two separate occasions. During 1 night, subjects were allowed to sleep normally, whereas during the other night all sleep was prevented. The six asthmatic patients demonstrated progressive increases in lower airway resistance (Rla) on both nights, but the rate of increase was twofold greater (P less than 0.0001) during the sleep night compared with the sleep prevention night. However, overnight decrements in forced expired volume in 1 s (FEV1) were similar over the 2 nights. The asthmatic patients maintained their minute ventilation as Rla increased during sleep, demonstrating a stable tidal volume with a mild increase in respiratory frequency. We conclude that in asthmatic patients with nocturnal worsening 1) Rla increases and FEV1 falls overnight regardless of sleep state, 2) sleep enhances the observed overnight increases in Rla, and 3) sleep does not abolish compensatory ventilatory responses to spontaneously occurring bronchoconstriction.  相似文献   

11.
Ventilation during sleep onset   总被引:1,自引:0,他引:1  
There is now considerable evidence which indicates that respiratory activity is different during sleep compared with wakefulness. However, there has been little work on respiratory changes during the transitional period from wakefulness to sleep. The present study was concerned with the quantitative and temporal properties of ventilation during sleep onset. Sleep onsets were studied in five young male adults in a series of single-subject designs in which sleep onsets were replications. The results indicated that during sleep onset the loss of alpha-activity in the electroencephalogram was associated with a substantial, rapid, and highly predictable reduction in ventilation. The change in ventilation was typically due to a reduction in tidal volume and was, in part, secondary to a reduction in metabolic rate. We speculate that the nonmetabolic component may reflect the loss of waking neural drive to respiration, though the present study did not eliminate a variety of other interpretations.  相似文献   

12.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

13.
Occlusion pressure and ventilation during sleep in normal humans   总被引:2,自引:0,他引:2  
Previous investigation in normal humans has demonstrated reduced ventilation and ventilatory responses to chemical stimuli during sleep. Most have interpreted this to be a product of decreasing central nervous system sensitivity to the normal stimuli that maintain ventilation, whereas other factors such as increasing airflow resistance could also contribute to this reduction in respiration. To improve our understanding of these events, we measured ventilation and occlusion pressures (P0.1) during unstimulated ventilation and rebreathing-induced hypercapnia during wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. Eighteen subjects (10 males and 8 females) of whom seven were snorers (5 males and 2 females) were studied. Ventilation was reduced during both NREM and REM sleep (P less than 0.05), but this decrement in minute ventilation tended to be greater in snorers than nonsnorers. Unstimulated P0.1, on the other hand, was maintained or increased during sleep in all groups studied, with males and snorers showing the largest increase. The hypercapnic ventilatory response fell during both NREM and REM sleep and tended to be lower during REM than NREM sleep. However, the P0.1 response to hypercapnia during NREM sleep was well maintained at the waking level although the REM response was statistically reduced. These studies suggest that the mechanism of the reduction in ventilation and the hypercapnic ventilatory response seen during sleep, particularly NREM sleep, is likely to be multifactorial and not totally a product of decreasing central respiratory drive.  相似文献   

14.
Because successive rapid-eye-movement (REM) sleep periods in the night are longer in duration and have more phasic events, ventilation during late REM sleep might be more affected than in earlier episodes. Despite the increase in eye movement density (EMD) in late REM sleep, average minute ventilation was, however, not reduced compared with that in early REM sleep. Decreases in rib cage motion (mean inspiratory flow of the rib cage) in association with increasing EMD were offset by increments in respiratory frequency. Apart from expiratory time, there were no significant changes in the slopes of the relationships between EMD and specific ventilatory components, from early to late REM sleep periods. However, there was an increase in the number of episodes when ventilation was reduced during late REM sleep. Changes in ventilatory pattern during late REM sleep are due to changes in the underlying nature of REM sleep. The ventilatory response during eye movements is, however, subject specific. Some subjects exhibit large decrements in mean inspiratory flow of the rib cage and increments in respiratory frequency during bursts of eye movement, whereas other individuals demonstrate only small changes in these ventilatory parameters.  相似文献   

15.
We studied the ventilatory response to hypoxia in 11 unanesthetized newborn kittens (n = 54) between 2 and 36 days of age by use of a flow-through system. During quiet sleep, with a decrease in inspired O2 fraction from 21 to 10%, minute ventilation increased from 0.828 +/- 0.029 to 1.166 +/- 0.047 l.min-1.kg-1 (P less than 0.001) and then decreased to 0.929 +/- 0.043 by 10 min of hypoxia. The late decrease in ventilation during hypoxia was related to a decrease in tidal volume (P less than 0.001). Respiratory frequency increased from 47 +/- 1 to 56 +/- 2 breaths/min, and integrated diaphragmatic activity increased from 14.9 +/- 0.9 to 20.2 +/- 1.4 arbitrary units; both remained elevated during hypoxia (P less than 0.001). Younger kittens (less than 10 days) had a greater decrease in ventilation than older kittens. These results suggest that the late decrease in ventilation during hypoxia in the newborn kitten is not central but is due to a peripheral mechanism located in the lungs or respiratory pump and affecting tidal volume primarily. We speculate that either pulmonary bronchoconstriction or mechanical uncoupling of diaphragm and chest wall may be involved.  相似文献   

16.
In the neonatal period, respiratory distortion of the chest wall in active sleep has been reported to reduce the thoracic gas volume. In order to investigate whether the distortion influences the tidal volume, a thorough quantification of the phase differences between the movements of the chest wall and the abdominal wall and the relation of the phase differences to the ventilation was performed on fifteen newborn infants sleeping in prone position. The changes in the circumference of the chest and abdomen were measured with mercury-in-silastic strain gauges; nasal air flow was monitored with a pneumotachograph. During quiet sleep, the movements of the chest wall and the abdominal wall were congruent and regular, and the tidal volume was not dependent on the observed phase differences between them. In active sleep, the breathing movements were incongruent, the tidal volume was negatively correlated with the phase shift between the movements of the chest wall and the abdominal wall, and the mean inspiratory flow was increased. Ventilation (ml/min) did not differ between the sleep states. This study thus suggests that, in healthy newborns in active sleep, the chest wall distortion leads to a reduction of the tidal volume, but ventilation is upheld by compensatory mechanisms, i.e. increased breathing rate and increased amplitude of movements of the diaphragm.  相似文献   

17.
This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.  相似文献   

18.
Since elderly subjects have lower chemosensitivity, we postulated that ventilation might be more state dependent in the elderly. To address this we investigated the changes in ventilation, measured by respiratory inductive plethysmography, with sleep in 12 healthy young (19-29 yr) and 13 elderly (greater than 65 yr) subjects. Ventilation was measured in representative periods in each sleep state. These data showed that there is no difference between the elderly and the young either in mean ventilation or in the variability of ventilation awake or in the different states of sleep. In both groups ventilation was variable in stage 1-2 sleep and least variable in stage 3-4 sleep. The variability in stage 1-2 sleep was due to periodic breathing (cycle time approximately 45 s) in both age groups. Although within a sleep state no differences were observed, over the night of study the elderly behaved differently from the young. Apneas occurred more frequently in the elderly, and 5 of 13 elderly met the criteria for sleep apnea syndrome compared with 1 of 12 young subjects. Apneas tended to occur predominantly in stage 1-2 sleep and seem to be an exaggeration of the periodicity that is typical of this state. Four of the elderly with apnea remained in this stage of sleep throughout the night of study. The apneic episodes usually terminated with an electroencephalogram arousal that occurred prior to or simultaneously with the onset of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Maintenance of eucapnia during sleep in obstructive sleep apnea (OSA) requires a balance between CO(2) loading during apnea and CO(2) elimination. This study examines individual respiratory events and relates magnitude of postevent ventilation to CO(2) load during the preceding respiratory event in 14 patients with OSA (arterial PCO(2) 42-56 Torr). Ventilation and expiratory CO(2) and O(2) fractions were measured on a breath-by-breath basis during daytime sleep. Calculations included CO(2) load during each event (metabolic CO(2) production - exhaled CO(2)) and postevent ventilation in the 10 s after an event. In 12 of 14 patients, a direct relationship existed between postevent ventilation and CO(2) load during the preceding event (P < 0.05); the slope of this relationship varied across subjects. Thus the postevent ventilation is tightly linked to CO(2) loading during each respiratory event and may be an important mechanism that defends against development of acute hypercapnia in OSA. An inverse relationship was noted between this postevent ventilatory response slope and the chronic awake arterial PCO(2) (r = 0.90, P < 0.001), suggesting that this mechanism is impaired in patients with chronic hypercapnia. The link between development of acute hypercapnia during respiratory events asleep and maintenance of chronic awake hypercapnia in OSA remains to be further investigated.  相似文献   

20.
The design of a microcomputer-controlled ventilator for automatic performance of lung function and circulatory tests has been described. It incorporates the characteristics of normal mechanical ventilation and also allows one to perform a multitude of test procedures for lung function and circulatory studies in paralyzed animals. The major components of the setup are a pump assembly with solenoid valves to direct gas flow, an electromechanical servo system, and a MS-DOS microcomputer system. The pump assembly has been constructed as a relatively simple device. Great versatility is created by the use of a microcomputer for the control of the ventilator. The software can be easily adapted to several other types of experimental studies. Besides the keyboard input the ventilator can be controlled by a remote computer system. This allows one to run an experimental protocol automatically and to use it in closed-loop servo ventilation. The flexibility in the choice of the respiratory parameters makes the ventilator suitable for lung function and circulatory studies during artificial ventilation. The ventilator has been successfully used in different animal studies during the last 6 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号