首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TRPCs function as cation channels in non-excitable cells. The N-terminal tails of all TRPCs contain an ankyrin-like repeat domain, one of the most common protein-protein interaction motifs. Using a yeast two-hybrid screening approach, we found that RNF24, a new membrane RING-H2 protein, interacted with the ankyrin-like repeat domain of TRPC6. GST pull-down and co-immunoprecipitation assays showed that RNF24 interacted with all TRPCs. Cell surface-labelling assays showed that the expression of TRPC6 at the surface of HEK 293T cells was greatly reduced when it was transiently co-transfected with RNF24. Confocal microscopy showed that TRPC3 and TRPC6 co-localized with RNF24 in a perinuclear compartment and that RNF24 co-localized with mannosidase II, a marker of the Golgi cisternae. Using a pulse-chase approach, we showed that RNF24 did not alter the maturation process of TRPC6. Moreover, in HEK 293T cells, RNF24 did not alter carbachol-induced Ca(2+) entry via endogenous channels or TRPC6. These results indicate that RNF24 interacts with TRPCs in the Golgi apparatus and affects TRPC intracellular trafficking without affecting their activity.  相似文献   

2.
Transient receptor potential canonical (TRPC) channels are associated with calcium entry activity in nonexcitable cells. TRPCs can form homo- or heterotetrameric channels, in which case they can assemble together within a subfamily groups. TRPC1, 4, and 5 represent one group, and TRPC3, 6, and 7 represent the other. The molecular determinants involved in promoting subunit tetramerization are not known. To identify them, we generated chimeras by swapping the different domains of TRPC4 with the same regions in TRPC6. We showed that TRPC4 coimmunoprecipitated with the chimeras containing the ankyrin repeats and coiled-coil domains of TRPC4 into TRPC6. However, chimeras containing only the ankyrin repeats or only the coiled-coil domain of TRPC4 did not coimmunoprecipitate with TRPC4. We also showed that a second domain of interaction composed of the pore region and the C-terminal tail is involved in the oligomerization of TRPC4. However, chimeras containing only the pore region or only the C-terminal tail of TRPC4 did not coimmunoprecipitate with TRPC4. Furthermore, we showed that the N terminus of TRPC6 coimmunoprecipitated with the C terminus of TRPC6. Overexpression in HEK293T cells of chimeras that contained an N terminus and a C terminus from different subfamily groups increased intracellular calcium entry subsequent to stimulation of G(q) protein-coupled receptors. These results suggest that two types of interactions are involved in the assembly of the four subunits of the TRPC channel. The first interaction occurs between the N termini and involves two regions. The second interaction occurs between the N terminus and the C terminus and does not appear to be necessary for the activity of TRPCs.  相似文献   

3.
The closely related TRPC4 and TRPC5 proteins, members of the canonical transient receptor potential (TRPC) family, assemble into either homo- or heterotetrameric, non-selective cation-channels. To elucidate domains that mediate channel complex formation, we evaluated dominant negative effects of N- or C-terminal TRPC4/5 fragments on respective currents of full-length proteins overexpressed in HEK293 cells with whole-cell electrophysiology. Confocal F?rster Resonance Energy Transfer (FRET) measurements enabled to probe the interaction potential of these CFP/YFP-labelled fragments in vivo. Only N-terminal fragments that included the first ankyrin-like repeat potently down-regulated TRPC4/TRPC5 currents, while fragments including either the second ankyrin-like repeat and the coiled-coil domain or the C-terminus remained ineffective. Total internal reflection fluorescence (TIRF) microscopy data suggested that the dominant negative N-terminal fragments led to a predominantly intracellular localisation of coexpressed TRPC5 proteins. FRET measurements clearly revealed that only fragments including the first ankyrin-like repeat were able to multimerise. Moreover a TRPC5 mutant that lacked the first ankyrin-like repeat was unable to homo-multimerise, failed to interact with wild-type TRPC5 and resulted in non-functional channels.  相似文献   

4.
Mutations in the presenilin (PS) genes are linked to the development of early-onset Alzheimer's disease by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP). Recent work indicates that Alzheimer's-disease-linked mutations in presenilin1 and presenilin2 attenuate calcium entry and augment calcium release from the endoplasmic reticulum (ER) in different cell types. However, the regulatory mechanisms underlying the altered profile of Ca(2+) signaling are unknown. The present study investigated the influence of two familial Alzheimer's-disease-linked presenilin2 variants (N141I and M239V) and a loss-of-function presenilin2 mutant (D263A) on the activity of the transient receptor potential canonical (TRPC)6 Ca(2+) entry channel. We show that transient coexpression of Alzheimer's-disease-linked presenilin2 mutants and TRPC6 in human embryonic kidney (HEK) 293T cells abolished agonist-induced TRPC6 activation without affecting agonist-induced endogenous Ca(2+) entry. The inhibitory effect of presenilin2 and the Alzheimer's-disease-linked presenilin2 variants was not due to an increase in amyloid beta-peptides in the medium. Despite the strong negative effect of the presenilin2 and Alzheimer's-disease-linked presenilin2 variants on agonist-induced TRPC6 activation, conformational coupling between inositol 1,4,5-trisphosphate receptor type 3 (IP(3)R3) and TRPC6 was unaffected. In cells coexpressing presenilin2 or the FAD-linked presenilin2 variants, Ca(2+) entry through TRPC6 could still be induced by direct activation of TRPC6 with 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, transient coexpression of a loss-of-function PS2 mutant and TRPC6 in HEK293T cells enhanced angiotensin II (AngII)- and OAG-induced Ca(2+) entry. These results clearly indicate that presenilin2 influences TRPC6-mediated Ca(2+) entry into HEK293 cells.  相似文献   

5.
Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6-PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type-specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity.  相似文献   

6.
7.
TRPC proteins are the mammalian homologues of the Drosophila transient receptor potential channel and are involved in calcium entry after agonist stimulation of non-excitable cells. Seven mammalian TRPCs have been cloned, and their mechanisms of activation and regulation are still the subject of intense research. TRPC proteins interact with the inositol 1,4,5-trisphosphate receptor, and the conformational coupling plays a critical role in the activation of calcium entry. Some evidence also supports an exocytotic mechanism as part of the activation of calcium entry. To investigate the possible involvement of exocytosis in TRPC6 activation, we evaluated the location of TRPC6 at the plasma membrane by biotinylation labeling of cell surface proteins and by indirect immunofluorescence marking of TRPC6 in stably transfected HEK 293 cells. We showed that when the muscarinic receptor was stimulated or the thapsigargin-induced intracellular calcium pool was depleted the level of TRPC6 at the plasma membrane increased. The carbachol concentration at which TRPC6 externalization occurred was lower than the concentration required to activate TRPC6. Externalization occurred within the first 30 s of stimulation, and TRPC6 remained at the plasma membrane as long as the stimulus was present. These results indicate that an exocytotic mechanism is involved in the activation of TRPC6.  相似文献   

8.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

9.
Boulay G 《Cell calcium》2002,32(4):201-207
Mammalian homologues of the Drosophila transient receptor potential channel (TRPC) are involved in Ca(2+) entry following agonist stimulation of nonexcitable cells. Seven mammalian TRPCs have been cloned but their mechanisms of activation and/or regulation are still the subject of intense research efforts. It has already been shown that calmodulin (CaM) can regulate the activity of Drosophila TRP and TRPL and, more recently, CaM has been shown to interact with mammalian TRPCs. In this study, TRPC6 stably transfected into HEK-293 cells was used to investigate the possible influence of CaM on TRPC6-dependent Ca(2+) entry. Overexpression of TRPC6 in mammalian cells is known to enhance agonist-induced Ca(2+) entry, but not thapsigargin-induced Ca(2+) entry. Here, we show that CaM inhibitors (calmidazolium and trifluoperazine) abolish receptor-operated Ca(2+) entry (ROCE) without affecting thapsigargin-operated Ca(2+) entry and that the activity of CaM is dependent on complexation with Ca(2+). We also show that Ca(2+)-CaM binds to TRPC6 and that the binding can be abolished by CaM inhibitors. These results indicate that CaM is involved in the modulation of ROCE.  相似文献   

10.
Endogenous cardiotonic steroids (CTS) raise blood pressure (BP) via vascular sodium calcium exchange (NCX1.3) and transient receptor-operated channels (TRPCs). Circulating CTS are superelevated in pregnancy-induced hypertension and preeclampsia. However, their significance in normal pregnancy, where BP is low, is paradoxical. Here we test the hypothesis that vascular resistance to endogenous ouabain (EO) develops in normal pregnancy and is mediated by reduced expression of NCX1.3 and TRPCs. We determined plasma and adrenal levels of EO and the impact of exogenous ouabain in pregnancy on arterial expression of Na(+) pumps, NCX1.3, TRPC3, and TRPC6 and BP. Pregnant (embryonic day 4) and nonpregnant rats received infusions of ouabain or vehicle. At 14-16 days, tissues and plasma were collected for blotting and EO assay by radioimmunoassay (RIA), liquid chromatography (LC)-RIA, and LC-multidimensional mass spectrometry (MS3). BP (-8 mmHg; P < 0.05) and NCX1.3 expression fell (aorta -60% and mesenteric artery -30%; P < 0.001) in pregnancy while TRPC expression was unchanged. Circulating EO increased (1.14 ± 0.13 nM) vs. nonpregnant (0.6 ± 0.08 nM; P < 0.05) and was confirmed by LC-MS3 and LC-RIA. LC-MS3 revealed two previously unknown isomers of EO; one increased ~90-fold in pregnancy. Adrenal EO but not isomers were increased in pregnancy. In nonpregnant rats, similar infusions of ouabain raised BP (+24 ± 3 mmHg; P < 0.001). In ouabain-infused rats, impaired fetal and placental growth occurred with no BP increase. In summary, normal pregnancy is an ouabain-resistant state associated with low BP, elevated circulating levels of EO, two novel steroidal EO isomers, and increased adrenal mass and EO content. Ouabain raises BP only in nonpregnant animals. Vascular resistance to the chronic pressor activity of endogenous and exogenous ouabain is mediated by suppressed NCX1.3 and reduced sensitivity of events downstream of Ca(2+) entry. The mechanisms of EO resistance and the impaired fetal and placental growth due to elevated ouabain may be important in pregnancy-induced hypertension (PIH) and preeclampsia (PE).  相似文献   

11.
12.
We have reported that internal Ca2+ store depletion in HSY cells stimulates a nonselective cation current which is distinct from I(CRAC) in RBL cells and TRPC1-dependent I(SOC) in HSG cells (Liu, X., Groschner, K., and Ambudkar, I. S. (2004) J. Membr. Biol. 200, 93-104). Here we have analyzed the molecular composition of this channel. Both thapsigargin (Tg) and 2-acetyl-sn-glycerol (OAG) stimulated similar non-selective cation currents and Ca2+ entry in HSY cells. The effects of Tg and OAG were not additive. HSY cells endogenously expressed TRPC1, TRPC3, and TRPC4 but not TRPC5 or TRPC6. Immunoprecipitation of TRPC1 pulled down TRPC3 but not TRPC4. Conversely, TRPC1 co-immunoprecipitated with TRPC3. Expression of antisense TRPC1 decreased (i) Tg- and OAG-stimulated currents and Ca2+ entry and (ii) the level of endogenous TRPC1 but not TRPC4. Antisense TRPC3 similarly reduced Ca2+ entry and endogenous TRPC3. Yeast two-hybrid analysis revealed an interaction between NTRPC1 and NTRPC3 (CTRPC1-CTRPC3, CTRPC3-CTRPC1, or CTRPC1-NTRPC3 did not interact), which was confirmed by glutathione S-transferase (GST) pull-down assays (GST-NTRPC3 pulled down TRPC1 and vice versa). Expression of NTRPC1 or NTRPC3 induced similar dominant suppression of Tg- and OAG-stimulated Ca2+ entry. NTRPC3 did not alter surface expression of TRPC1 or TRPC3 but disrupted TRPC1-TRPC3 association. In aggregate, our data demonstrate that TRPC1 and TRPC3 co-assemble, via N-terminal interactions, to form a heteromeric store-operated non-selective cation channel in HSY cells. Thus selective association between TRPCs generate distinct store-operated channels. Diversity of store-operated channels might be related to the physiology of the different cell types.  相似文献   

13.
Although store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel. While all TRPCs are activated in response to agonist-stimulated phosphatidylinositol 4,5, bisphosphate (PIP(2)) hydrolysis, only some display store-dependent regulation. TRPC1 is currently the strongest candidate component of SOC and is shown to contribute to SOCE in many cell types. Heteromeric interactions of TRPC1 with other TRPCs generate diverse SOC channels. Recent studies have revealed novel components of SOCE, namely the stromal interacting molecule (STIM) and Orai proteins. While STIM1 has been suggested to be the ER-Ca(2+) sensor protein relaying the signal to the plasma membrane for activation of SOCE, Orai1 is reported to be the pore-forming component of CRAC channel that mediates SOCE in T-lymphocytes and other hematopoetic cells. Several studies now demonstrate that TRPC1 also associates with STIM1 suggesting that SOC and CRAC channels are regulated by similar molecular components. Interestingly, TRPC1 is also associated with Orai1 and a TRPC1-Orai1-STIM1 ternary complex contributes to SOC channel function. This review will focus on the diverse SOC channels formed by TRPC1 and the suggestion that TRPC1 might serve as a molecular link that determines their regulation by store-depletion.  相似文献   

14.
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells.  相似文献   

15.
The cGMP/cGMP-dependent protein kinase (cGK) signaling pathway is implicated in the functional regulation of intracellular calcium levels. In the present study, we investigated the regulation of transient receptor potential canonical 7 (TRPC7) by the cGMP/cGK-I pathway. TRPC7 contains three putative cGK phosphorylation sites (Arg-Arg/Lys-Xaa-Ser/Thr). However, the role of cGK-I in the regulation of TRPC7 activity remains unclear. In vitro and in vivo kinase assays have revealed that cGK-Iα phosphorylates mouse TRPC7 but not mouse TRPC3. Site-directed mutagenesis analysis revealed that TRPC7 was phosphorylated by cGK-Iα at threonine 15. Phosphorylation of TRPC7 significantly suppressed carbachol-induced calcium influx and CREB phosphorylation. Furthermore, co-immunoprecipitation assay demonstrated that cGK-Iα interacted with the ankyrin repeat domain in the N terminus of TRPC7. cGK-Iβ also bound to TRPC7, while the type II regulatory subunit of cAMP-dependent protein kinase did not bind. These data indicate that cGK-Iα interacts with and phosphorylates TRPC7, contributing to the quick and accurate regulation of calcium influx and CREB phosphorylation.  相似文献   

16.
The exact role of TRPC1 in store-operated calcium influx channel (SOCC) function is not known. We have examined the effect of overexpression of full-length TRPC1, depletion of endogenous TRPC1, and expression of TRPC1 in which the proposed pore region (S5-S6, amino acids (aa) 557-620) was deleted or modified by site-directed mutagenesis on thapsigargin- and carbachol-stimulated SOCC activity in HSG cells. TRPC1 overexpression induced channel activity that was indistinguishable from the endogenous SOCC activity. Transfection with antisense hTRPC1 decreased SOCC activity although characteristics of SOCC-mediated current, I(SOC), were not altered. Expression of TRPC1 Delta 567-793, but not TRPC1 Delta 664-793, induced a similar decrease in SOCC activity. Furthermore, TRPC1 Delta 567-793 was co-immunoprecipitated with endogenous TRPC1. Simultaneous substitutions of seven acidic aa in the S5-S6 region (Asp --> Asn and Glu --> Gln) decreased SOCC-mediated Ca(2+), but not Na(+), current and induced a left shift in E(rev). Similar effects were induced by E576K or D581K, but not D581N or E615K, substitution. Furthermore, expressed TRPC1 proteins interacted with each other. Together, these data demonstrate that TRPC1 is required for generation of functional SOCC in HSG cells. We suggest that TRPC1 monomers co-assemble to form SOCC and that specific acidic aa residues in the proposed pore region of TRPC1 contribute to Ca(2+) influx.  相似文献   

17.
The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G-protein coupled receptor agonist sphingosine-1-phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist-evoked or store-dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels.  相似文献   

18.
In DT40 B lymphocytes, Canonical Transient Receptor Potential 7 (TRPC7) functions as a diacylglycerol-activated non-selective cation channel. However, previous work indicated that the non-store-operated Ca2+ entry in this cell type depends upon inositol trisphosphate receptors (IP3R). With the cell-attached configuration oleyl-acetyl-glycerol (OAG) induced single channel activity (75 pS) that was not observed in TRPC7-/- cells but was rescued by expression of TRPC7 under conditions expected to produce relatively low levels of expression ((LowT7)TRPC7-/-). A DT40 cell line lacking IP3R(IP3R-/- cells) showed no OAG-induced single channel activity, but this activity was rescued by transient expression of an IP3R((IP3R)IP3R-/-). Single channel properties in (LowT7)TRPC7-/- or (IP3R)IP3R-/- DT40 cells were indistinguishable from one another and from wild-type cells. Thus, TRPC7 forms, or is part of, the channel underlying endogenous diacylglycerol-activated currents in DT40 B lymphocytes, and this activity of native TRPC7 requires IP3R. However, with conditions expected to produce greater expression levels, TRPC7 functioned independently of the presence of IP3R. This finding may serve to resolve previously conflicting reports from expression studies of TRPC channels.  相似文献   

19.
The receptor-evoked Ca(2+) signal includes activation of the store-operated channels (SOCs) TRPCs and the Orais. Although both are gated by STIM1, it is not known how STIM1 gates the channels and whether STIM1 gates the TRPCs and Orais by the same mechanism. Here, we report the molecular mechanism by which STIM1 gates TRPC1, which involves interaction between two conserved, negatively charged aspartates in TRPC1((639)DD(640)) with the positively charged STIM1((684)KK(685)) in STIM1 polybasic domain. Charge swapping and functional analysis revealed that exact orientation of the charges on TRPC1 and STIM1 are required, but all positive-negative charge combinations on TRPC1 and STIM1, except STIM1((684)EE(685))+TRPC1((639)RR(640)), are functional as long as they are reciprocal, indicating that STIM1 gates TRPC1 by intermolecular electrostatic interaction. Similar gating was observed with TRPC3((697)DD(698)). STIM1 gates Orai1 by a different mechanism since the polybasic and S/P domains of STIM1 are not required for activation of Orai1 by STIM1.  相似文献   

20.
Endogenously expressed canonical transient receptor potential (TRPC) homologs were investigated for their role in forming store-operated, 1-oleoyl-2-acetyl-sn-glycerol-stimulated, or carbachol (CCh)-stimulated calcium entry pathways in HEK-293 cells. Measurement of thapsigargin-stimulated Ba(2+) entry indicated that the individual suppression of TRPC1, TRPC3, or TRPC7 protein levels, by small interfering RNA (siRNA) techniques, dramatically inhibited (52-68%) store-operated calcium entry (SOCE), whereas suppression of TRPC4 or TRPC6 had no effect. Combined suppression of TRPC1-TRPC3, TRPC1-TRPC7, TRPC3-TRPC7, or TRPC1-TRPC3-TRPC7 gave only slightly more inhibition of SOCE (74-78%) than seen with suppression of TRPC1 alone (68%), suggesting that these three TRPC homologs work in tandem to mediate a large component of SOCE. Evidence from co-immunoprecipitation experiments indicates that a TRPC1-TRPC3-TRPC7 complex, predicted from siRNA results, does exist. The suppression of either TRPC3 or TRPC7, but not TRPC1, induced a high Ba(2+) leak flux that was inhibited by 2-APB and SKF96365, suggesting that the influx is via leaky store-operated channels. The high Ba(2+) leak flux is eliminated by co-suppression of TRPC1-TRPC3 or TRPC1-TRPC7. For 1-oleoyl-2-acetyl-sn-glycerol-stimulated cells, siRNA data indicate that TRPC1 plays no role in mediating Ba(2+) entry, which appears to be mediated by the participation of TRPC3, TRPC4, TRPC6, and TRPC7. CCh-stimulated Ba(2+) entry, on the other hand, could be inhibited by suppression of any of the five endogenously expressed TRPC homologs, with the degree of inhibition being consistent with CCh stimulation of both store-operated and receptor-operated channels. In summary, endogenous TRPC1, TRPC3, and TRPC7 participate in forming heteromeric store-operated channels, whereas TRPC3 and TRPC7 can also participate in forming heteromeric receptor-operated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号