首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Radical radiotherapy of lung cancer with dose escalation has been associated with increased tumor control. However, these attempts to continually improve local control through dose escalation, have met mixed results culminating in the findings of the RTOG trial 0617, where the heart dose was associated with a worse overall survival, indicating a significant contribution to radiation-induced cardiac morbidity. It is, therefore, very likely that poorly understood cardiac toxicity may have offset any potential improvement in overall survival derived from dose escalation and may be an obstacle that limits disease control and survival of patients. The manifestations of cardiac toxicity are relatively common after high dose radiotherapy of advanced lung cancers and are independently associated with both heart dose and baseline cardiac risk. Toxicity following the treatment may occur earlier than previously thought and, therefore, heart doses should be minimized. In patients with lung cancer, who not only receive substantial heart dose, but are also older with more comorbidities, all cardiac events have the potential to be clinically significant and life-threatening.Sophisticated radiation treatment planning techniques, charged particle therapy, and modern imaging methods in radiotherapy planning, may lead to reduction of the heart dose, which could potentially improve the clinical outcomes in patients with lung cancer. Efforts should be made to minimize heart radiation exposure whenever possible even at doses lower than those generally recommended. Heart doses should be limited as much as possible.A heart dosimetry as a whole is important for patient outcomes, rather than emphasizing just one parameter.  相似文献   

2.
Recent research in molecular radiation carcinogenesis is reviewed with the specific aim of exploring the implications this research may have on the dose response relationship of radiation-induced cancer at low doses and low dose rates. It is concluded that the linear non-threshold dose response hypothesis may be used in radiation protection planning as a simple, convenient method to optimize procedures and regulations, but should not be mistaken as a stringent scientific conclusion directly derived from the present state of knowledge of the processes involved in radiation carcinogenesis.  相似文献   

3.
Imaging dose in radiation therapy has traditionally been ignored due to its low magnitude and frequency in comparison to therapeutic dose used to treat patients. The advent of modern, volumetric, imaging modalities, often as an integral part of linear accelerators, has facilitated the implementation of image-guided radiation therapy (IGRT), which is often accomplished by daily imaging of patients. Daily imaging results in additional dose delivered to patient that warrants new attention be given to imaging dose. This review summarizes the imaging dose delivered to patients as the result of cone beam computed tomography (CBCT) imaging performed in radiation therapy using current methods and equipment. This review also summarizes methods to calculate the imaging dose, including the use of Monte Carlo (MC) and treatment planning systems (TPS). Peripheral dose from CBCT imaging, dose reduction methods, the use of effective dose in describing imaging dose, and the measurement of CT dose index (CTDI) in CBCT systems are also reviewed.  相似文献   

4.
Stereotactic body radiotherapy (SBRT) distinguishes itself by necessitating more rigid patient immobilization, accounting for respiratory motion, intricate treatment planning, on-board imaging, and reduced number of ablative radiation doses to cancer targets usually refractory to chemotherapy and conventional radiation. Steep SBRT radiation dose drop-off permits narrow ''pencil beam'' treatment fields to be used for ablative radiation treatment condensed into 1 to 3 treatments.Treating physicians must appreciate that SBRT comes at a bigger danger of normal tissue injury and chance of geographic tumor miss. Both must be tackled by immobilization of cancer targets and by high-precision treatment delivery. Cancer target immobilization has been achieved through use of indexed customized Styrofoam casts, evacuated bean bags, or body-fix molds with patient-independent abdominal compression.1-3 Intrafraction motion of cancer targets due to breathing now can be reduced by patient-responsive breath hold techniques,4 patient mouthpiece active breathing coordination,5 respiration-correlated computed tomography,6 or image-guided tracking of fiducials implanted within and around a moving tumor.7-9 The Cyberknife system (Accuray [Sunnyvale, CA]) utilizes a radiation linear accelerator mounted on a industrial robotic arm that accurately follows patient respiratory motion by a camera-tracked set of light-emitting diodes (LED) impregnated on a vest fitted to a patient.10 Substantial reductions in radiation therapy margins can be achieved by motion tracking, ultimately rendering a smaller planning target volumes that are irradiated with submillimeter accuracy.11-13Cancer targets treated by SBRT are irradiated by converging, tightly collimated beams. Resultant radiation dose to cancer target volume histograms have a more pronounced radiation "shoulder" indicating high percentage target coverage and a small high-dose radiation "tail." Thus, increased target conformality comes at the expense of decreased dose uniformity in the SBRT cancer target. This may have implications for both subsequent tumor control in the SBRT target and normal tissue tolerance of organs at-risk. Due to the sharp dose falloff in SBRT, the possibility of occult disease escaping ablative radiation dose occurs when cancer targets are not fully recognized and inadequate SBRT dose margins are applied. Clinical target volume (CTV) expansion by 0.5 cm, resulting in a larger planning target volume (PTV), is associated with increased target control without undue normal tissue injury.7,8 Further reduction in the probability of geographic miss may be achieved by incorporation of 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET).8 Use of 18F-FDG PET/CT in SBRT treatment planning is only the beginning of attempts to discover new imaging target molecular signatures for gynecologic cancers.  相似文献   

5.
In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project.In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.  相似文献   

6.
The multileaf collimator (MLC) is the standard device used to shape radiation beams for 3-d conformal and intensity-modulated radiation therapy (IMRT). Due to the inherent properties of MLC, there is a small amount of radiation transmitted through the leaves, called radiation transmission (RT). Accurate measurements of this radiation are required to commission and validate IMRT-capable treatment planning systems because this radiation may impact the dosimetry of IMRT-calculated dose distributions. This work compares several detectors in the measurement of RT for a micro-multileaf collimation system. The results show that there are statistically significant differences in the measured RT values between detectors from 3.5 to 12.5% for the same MLC model and less than 0.2% relative to the isocentre dose for an open reference field. However, although small in magnitude, these differences may impact the dosimetry of IMRT treatment planning by up to 1.78 Gy to the healthy tissue surrounding the target for a treatment of 60 Gy in 30 fractions. By the later, these differences must be included as a source of uncertainty in IMRT dose delivery. Also, it must be established which detector offers the most reliable results in the measurement of the RT by using Monte Carlo simulation methods.  相似文献   

7.
Intensity modulated radiotherapy (IMRT) is one of the most modern radiation therapy treatment techniques. Although IMRT can deliver high and complex conformational doses to the tumor volume, its implementation requires rigorous quality assurance (QA) procedures that include a dosimetric pre-treatment verification of individual patient planning. This verification usually involves measuring a small volume of absolute dose with an ionization chamber and checking bi-dimensional fluency with an array of detectors. The planning technique has tri-dimensional characteristics, but no tridimensional dosimetry has been established in the clinical routine. One strategy to perform three-dimensional dosimetry is to use polymeric gels associated with magnetic resonance imaging to evaluate dose distribution. Here, we have compared the results of conventional QA procedures involving one- and two-dimensional dosimetry to the results of three-dimensional dosimetry conducted with MAGIC-f gel in 10 cases of prostate cancer IMRT planning. More specifically, we used the gamma index (3%/3 mm) to compare the results of three-dimensional dosimetry to the expected dose distributions obtained with the treatment planning system. Except for one IMRT treatment plan, the gel dosimetry results agreed with the conventional quality control and provided an overview of dose distribution in the target volume.  相似文献   

8.
Coronary disease induced by previous radiotherapy is the most common cause of death among patients treated with radiotherapy for cancer. Risk factors that may affect the frequency and intensity of radiotherapy’s cardiac toxicity are primarily the radiation dose and the volume of the heart exposed to radiation. The prolonged survival time of patients after radiotherapy, but also the intensive development of modern radiotherapy techniques results in the necessity of precise estimation of both tumor control probability, and the risk of normal tissue damage, thus the models describing the probability of complications in normal tissues have also been developed. The response from the cardiovascular system to high-dose radiation is known and associated with a pro-inflammatory response. However, the effect of low doses may be completely different because it induces an anti-inflammatory response. Also, there is no unambiguous answer to the question of whether RICD is a deterministic effect. Moreover, there is a lack of literature data on the use of known radiobiological models to assess the risk of cardiovascular complications. The models described are general and concerns any healthy tissue. Therefore, when planning treatment for patients, particular attention should be paid to the dose and area of ​​the heart to be irradiated.  相似文献   

9.
AIM: The importance of 3D conformal percutan and brachytherapy treatment planning based on CT and MRI examinations in treatment of oral cavity tumors. Introducing of the planning procedure and the selection aspects. METHOD: We present the treatment planning based on CT and MRI slices of an oral cavity tumor. The percutan or interstitial boost follow the percutan irradiation of the involved regions and lymph nodes, regarding to the target volume and the critical organs. RESULT: Our ADAC 3D planning system gives us the possibility to add the first line and the boost treatment plans, to determine and compare the dose distribution within the planned target volume and the radiation load of the critical organs. CONCLUSION: The comparative 3D radiation planning system allows higher local dose escalation required for the effective radiation treatment of oral cavity tumors with maximal protection of the surrounding healthy tissues.  相似文献   

10.
Prostate cancer is the most common malignancy and the second leading cause of cancer-related death in men. Radiotherapy is a curative option that is administered via external beam radiation, brachytherapy, or in combination. Erectile, ejaculatory and orgasm dysfunction(s) is/are known potential and common toxicities associated with prostate radiotherapy. Our multidisciplinary team of physicians and/or scientists have written a three (3) part comprehensive review of the pathogenesis and management radiation-induced sexual dysfunction. Part I reviews pertinent anatomy associated with normal sexual function and then considers the pathogenesis of prostate radiation-induced sexual toxicities. Next, our team considers the associated radiobiological (including the effects of time, dose and fractionation) and physical (treatment planning and defining a novel Organ at Risk (OAR)) components that should be minded in the context of safe radiation treatment planning. The authors identify an OAR (i.e., the prostatic plexus) and provide suggestions on how to minimize injury to said OAR during the radiation treatment planning process.  相似文献   

11.
12.
13.
The expanding use of computers in radiation therapy procedures, especially the rapidly increasing use of digital CT-information, necessitates the coordination of the different systems in order to facilitate their developments. In order to define necessary demands for tomorrow a Nordic cooperation was initiated 1981 by NORDFORSK (Nordic co-operative organization for applied research), and a group of physicians and physicists having their daily work in this field of medicine and physics was invited to produce a report on 'User requirements on CT-based computed dose planning systems on radiation therapy'. The work has been done within the frame of NORDFORSK's activities and has been independent of the existing commissions and associations in the radiology field, but it has taken into consideration recommendations that have been given by or are being produced by other organizations. This report is a short summary of the complete paper which will be published in Acta Radiologica. The aim of this short version is to get an early presentation of the 'requirement lists' (see Appendix) which we think are of immediate importance.  相似文献   

14.
15.
Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.  相似文献   

16.
Summary Treatment planning for pion radiation therapy must take into account changes in radiation quality within the patient. At the biomedical channelE3 of SIN (Swiss Institute for Nuclear Research) microdosimetric measurements have been performed to investigate radiation quality within pion irradiated phantoms. Results are presented in terms of microdosimetric spectra and derived quantities. As expected marked differences are observed between dose peak and plateau for narrow pion beams. The influence of simulated site diameter on measured spectra has been found to be more pronounced in the plateau region than in the peak. Investigation of the influence of peak width on radiation quality revealed a dilution of the high-LET dose fraction for broader peaks.  相似文献   

17.
The capacity of HL-60 cells, human acute promyelocytic leukemic cells established in culture, to repair sublethal radiation damage was estimated from the response of the cells to fractionated irradiation or to a single irradiation at different dose rates. The HL-60 cells grown as a suspension culture in RPMI 1640 medium supplemented with 10% calf serum and antibiotics showed a cloning efficiency of about 0.46 in an agar culture bed. After exposure of cells to a single dose of X rays at a dose rate of 78 rad/min, the survival curve was characterized by n = 2.5, Dq = 80 rad, and D0 = 83.2 rad. Split-dose studies demonstrated that the cells were able to repair a substantial portion of sublethal radiation damage in 2 hr. The response of the cells to irradiation at different dose rates decreased with a decrease in the dose rates, which could be attributed to repair of sublethal radiation damage. The radiation response of leukemic cells is only one of the many factors which affect the clinical outcome of total-body irradiation (TBI) followed by bone marrow transplantation. Nevertheless, the possibility that some of the malignant hemopoietic cells, if not all, may possess a substantial capacity to repair sublethal radiation damage should not be underestimated in planning total-body irradiation followed by bone marrow transplantation.  相似文献   

18.
The distribution of the dose to the head of a primate phantom due to 55-MeV proton irradiation was calculated using a clinical radiotherapy treatment planning system, with anatomic definition through computerized tomography scans. Dose profiles, isodose distributions, and differential and integral dose-volume histograms are used to describe the probable proton dose to the brain of rhesus monkeys, irradiated over two decades ago, in which brain tumors have now developed. The dose analysis shows that 59% of the brain received a dose in excess of the reference surface dose, and that portions of the brain received doses greater than 300% of the reference surface dose. The regions of high dose are illustrated in isodose distributions. This information may be useful in evaluating potential tumor induction following radiation exposure.  相似文献   

19.
Medical imaging using X-rays has been one of the most popular imaging modalities ever since the discovery of X-rays 125 years ago. With unquestionable benefits, concerns about radiation risks have frequently been raised. Computed tomography (CT) and fluoroscopic guided interventional procedures have the potential to impart higher radiation exposure to patients than radiographic examinations. Despite technological advances, there have been instances of increased doses per procedure mainly because of better diagnostic information in images. However, cumulative dose from multiple procedures is creating new concerns as effective doses >100 mSv are not uncommon. There is a need for action at all levels. Manufacturers must produce equipment that can provide a quality diagnostic image at substantially lesser dose and better implementation of optimization strategies by users. There is an urgent need for the industry to develop CT scanners with sub-mSv radiation dose, a goal that has been lingering. It appears that a new monochromatic X-ray source will lead to replacement of X-ray tubes all over the world in coming years and will lead to a drastic reduction in radiation doses. This innovation will impact all X-ray imaging and will help dose reduction. For interventional procedures, the likely employment of robotic systems in practice may drastically reduce radiation exposures to operators- but patient exposure will still remain an issue. Training needs always need to be emphasized and practiced.  相似文献   

20.
Microbeam radiation therapy (MRT), a so far preclinical method in radiation oncology, modulates treatment doses on a micrometre scale. MRT uses treatment fields with a few ten micrometre wide high dose regions (peaks) separated by a few hundred micrometre wide low dose regions (valleys) and was shown to spare tissue much more effectively than conventional radiation therapy at similar tumour control rates. While preclinical research focused primarily on tumours of the central nervous system, recently also lung tumours have been suggested as a potential target for MRT.This study investigates the effect of the lung microstructure, comprising air cavities of a few hundred micrometre diameter, on the microbeam dose distribution in lung. In Monte Carlo simulations different models of heterogeneous lung tissue are compared with pure water and homogeneous air–water mixtures. Experimentally, microbeam dose distributions in porous foam material with cavity sizes similar to the size of lung alveoli were measured with film dosimetry at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.Simulations and experiments show that the microstructure of the lung has a huge impact on the local doses in the microbeam fields. Locally, material inhomogeneities may change the dose by a factor of 1.7, and also average peak and valley doses substantially differ from those in homogeneous material.Our results imply that accurate dose prediction for MRT in lung requires adequate models of the lung microstructure. Even if only average peak and valley doses are of interest, the assumption of a simple homogeneous air–water mixture is not sufficient. Since anatomic information on a micrometre scale are unavailable for clinical treatment planning, alternative methods and models have to be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号