首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenylalanine-regulated isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate- synthase (DAHPS) from Escherichia coli, its binary complexes with either substrate, phosphoenolpyruvate (PEP), or feedback inhibitor, Phe, and its ternary complexes with either PEP or Phe plus metal cofactor (either Mn2+, Cd2+, or Pb2+) were crystallized from polyethylglycol (PEG) solutions. All crystals of the DAHPS without Phe belong to space group C2, with cell parameters a = 213.5 Å, b = 54.3 Å, c = 149.0 Å, β = 116.6°. All crystals of the enzyme with Phe also belong to space group C2, but with cell parameters a = 297.1 Å, b = 91.4 Å, c = 256.5 Å, and β = 148.2°.  相似文献   

2.
Leaves of Zea mays L. seedlings which developed at optimal (25°C) or suboptimal (15°C) temperature were exposed to high irradiance (1000 μmol m?2 s?1) and a severe chilling temperature (5°C) for up to 24 h to investigate their ability to withstand photooxidative stress. During this stress, the degradation of the endogenous antioxidants ascorbate, glutathione and α-tocopherol was delayed and less pronounced in 15°C leaves. Similarly, the decline in chlorophyll a, chlorophyll b, β-carotene and lutein was slower throughout the stress period. Faster development and a higher level of non-photochemical quenching (NPQ) of chlorophyll fluorescence, related to a stronger de-poxidation of the larger xanthophyll cycle pool in 15°C leaves, could act as a defence mechanism to reduce the formation of reactive oxygen species during severe chilling. Furthermore, plants grown at suboptimal temperature exhibited a higher amount of the antioxidants glutathione and α-tocopherol. The higher α-tocopherol content in leaves (double based on leaf area; 4-fold higher based on chlorophyll content) which developed at suboptimal temperature may play an especially important role in the stabilization of the thylakoid membrane and thus prevent lipid peroxidation.  相似文献   

3.
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.  相似文献   

4.
Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat Macroglossus minimus (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature (T b) (33 to 37 °C) over a wide range of ambient temperatures (T as) and a relatively low basal metabolic rate (1.29 ml O2 g−1 h−1). Bats entered torpor frequently in the laboratory at T as between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of T a. MRs during torpor were reduced to about 20–40% of normothermic bats and T bs were regulated at a minimum of 23.1 ± 1.4 °C. The duration of torpor bouts increased with decreasing T a in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum T b and MR of torpid M. minimus were higher than that predicted for a 16-g daily heterotherm and the T b was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by T a and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor. Accepted: 22 September 1997  相似文献   

5.
Endotherms allocate large amounts of energy and water to the regulation of a precise body temperature (Tb), but can potentially reduce thermoregulatory costs by allowing Tb to deviate from normothermic levels. Many data on heterothermy at low air temperatures (Ta) exist for caprimulgids, whereas data on thermoregulation at high Ta are largely absent, despite members of this taxon frequently roosting and nesting in sites exposed to high operative temperatures. We investigated thermoregulation in free‐ranging rufous‐cheeked nightjars Caprimulgus rufigena and freckled nightjars Caprimulgus tristigma in the southern African arid zone. Individuals of both species showed labile Tb fluctuating around a single modal Tb (Tb‐mod). Average Tb‐mod was 39.7°C for rufous‐cheeked nightjars and 39.0°C for freckled nightjars. In both species, diurnal Tb increased with increasing Ta. At Ta ≥ 38°C, rufous‐cheeked nightjar mean Tb increased to 42°C, equivalent to 2.3°C above Tb‐mod. Under similar conditions, freckled nightjar Tb was on average only 1.1°C above Tb‐mod, with a mean Tb of 40.0°C. Freckled nightjars are one of the most heterothermic caprimulgids investigated to date, but our data suggest that during hot conditions this species maintains Tb within a narrow range above Tb‐mod, possibly reflecting an evolutionary tradeoff between decreased thermal sensitivity to lower Tb but increased sensitivity to high Tb. These findings reveal how general thermoregulatory patterns at similar Ta can vary even among closely related species.  相似文献   

6.
The Fab fragment of the neutralizing monoclonal antibody SD6 elicited against foot-and-mouth disease virus (FMDV) C-SBcl and its complex with a peptide, corresponding to the major antigenic site of FMDV (VPl residues 136–150, YTASARGDLAHLTTT), have been crystallized using the hanging drop vapor diffusion techniques. For the isolated Fab, crystals diffracting to 2.5 Å resolution were obtained at room temperature using ammonium sulfate as precipitant. These crystals are monoclinic, space group C2, and unit cell parameters a = 109.53 Å, b = 89.12 Å, c = 64.04 Å, and β = 112.9° and contain one Fab molecule per asymmetric unit. Crystals from the complex diffract, at least, to 2.8 Å resolution and were obtained, at room temperature, using PEG as precipitant. These crystals are monoclinic, space group P2, and unit cell parameters a = 56.11 Å, b = 60.67 Å, c = 143.45 Å, and β = 95.4°, Density packing considerations indicate that there are two Fab molecules in the asymmetric unit. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Bats in hot roosts experience some of the most thermally challenging environments of any endotherms, but little is known about how heat tolerance and evaporative cooling capacity vary among species. We investigated thermoregulation in three sympatric species (Nycteris thebaica, Taphozous mauritianus and Sauromys petrophilus) in a hot, semi-arid environment by measuring body temperature (T b), metabolic rate and evaporative water loss (EWL) at air temperatures (T a) of 10?C42?°C. S. petrophilus was highly heterothermic with no clear thermoneutral zone, and exhibited rapid increases in EWL at high T a to a maximum of 23.7?±?7.4?mg?g?1?h?1 at T a????42?°C, with a concomitant maximum T b of 43.7?±?1.0?°C. T. mauritianus remained largely normothermic at T as below thermoneutrality and increased EWL to 14.7?±?1.3?mg?g?1?h?1 at T a????42?°C, with a maximum T b of 42.9?±?1.6?°C. In N. thebaica, EWL began increasing at lower T a than in either of the other species and reached a maximum of 18.6?±?2.1?mg?g?1?h?1 at T a?=?39.4?°C, with comparatively high maximum T b values of 45.0?±?0.9?°C. Under the conditions of our study, N. thebaica was considerably less heat tolerant than the other two species. Among seven species of bats for which data on T b as well as roost temperatures in comparison to outside T a are available, we found limited evidence for a correlation between overall heat tolerance and the extent to which roosts are buffered from high T a.  相似文献   

8.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   

9.
1. The elimination rate of radiocaesium in brown trout Salmo trutta L. was determined in the laboratory at four water temperatures (range 4.4–15.6°C). In the experiments three or four homogenous size-groups of fish (mean weights 23–496 g) were studied at each temperature. 2. The brown trout received acute oral doses of 134Cs and were killed at intervals for radioactivity counting. The retention versus time curves were composed of two distinct exponential components. The long-lived component was quantitatively the most important for retention of radiocaesium. Elimination rate increased with increasing water temperature and decreased with increasing body weight. 3. The biological half-life of 134Cs (Tb, days) was related to fresh body weight (W, g) and water temperature (t, °C) by the equation: Tb= 290 ×W°.176× e-°.106×t. The elimination rate of Cs could be predicted from weight-specific metabolic rate as given by Elliott's equations for brown trout.  相似文献   

10.
The bifunctional flavoenzyme 5-hydroxyvaleryl-CoA dehydratase/ dehydrogenase has been crystallized from solutions containing ammonium sulfate (form I) or polyethylene glycol (form II) as precipitant. In both cases, the crystals grew in the monoclinic space group C2. The unit cell dimensions for form I crystals were determined as a = 162.8 Å, b = 71.8 Å, c = 83.5 Å, β = 109.1°. Corresponding values for form II crystals were a = 161.2 Å, b = 71.6 Å, c = 82.2 Å, β = 109.3°. In both cases most probably there are two monomers per asymmetric unit. The crystals diffract to about 2 Å resolution and are rather stable in the X-ray beam. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

12.
(1) The thermal capabilities of Australian silvereyes (Zosterops lateralis, 11 g) were investigated both at low and high ambient temperatures (Ta) during the photophase and scotophase. (2). The peak metabolic rate (PMR) induced by helium–oxygen (79:21 %, He–O2) exposure during the photophase was 15.64±1.55 mL O2 g−1 h−1 at an effective lower survival limit Ta (Tpmr) of −39.7±6.1°C. (3). Above the thermoneutral zone (TNZ), metabolic rate, body temperature (Tb), and thermal conductance increased steeply, but they were able to withstand a Ta of 39°C. (4). Our study shows that silvereyes are able to tolerate an impressive range of Ta from about −42°C to at least +39°C and are able to produce enough heat to maintain a thermal difference between Tb and Ta of up to 80°C.  相似文献   

13.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respetively) to Leuproteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21°C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from ~6.9, in the free Leu-proteinase, to ~5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c - Ka = 2.2 × 1011 M-1, δG°= - 64kJ/mol, δH° = + 5.9kJ/mol, and δS° = + 240J/molK; Leu-proteinase:BBI - Ka = 3.2 × 1010 M-1, δG° = - 59kJ/mol, δH°= + 8.8kJ/mol, and δS° = + 230J/molK; and Leu-proteinase:F-C - Ka = 1.1 × 106 M-1, δG°= - 34kJ/mol, δH° = + 18J/mol, and δS° = + 180J/molK (values of Ka, δG° and δS° were obtained at 21.0°C; values of δH° were temperature-independent over the range explored, i.e. between 10.0°C and 40.0°C). F-T does not inhibit Leu-proteinase up to an inhibitor concentration of 1.0 × 10-3 M, suggesting that the upper limit of Ka is 1 × 102 M-1. Considering the known molecular models, the observed binding behaviour of eglin c, BBI, F-C and F-T to Leu-proteinase has been related to the inferred stereochemistry of the enzyme/inhibitor contact region  相似文献   

14.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

15.
The freshwater cyanobacterium Cylindrospermopsis raciborskii spreads from tropical to temperate regions worldwide. This entails acclimation to varied light and temperature conditions. We studied the thermal and light acclimation of the photosynthetic machinery of C. raciborskii by monitoring alteration of the chlorophyll a and carotenoid content in German strains of C. raciborskii, in African and Australian strains of C. raciborskii, and in German strains of Aphanizomenon gracile, a native cyanobacterium belonging to the same order (Nostocales). Our results showed that temperate and tropical C. raciborskii strains did not differ in pigment acclimation to light and temperature. In contrast, the ratio of photoprotective carotenoids (namely the carotenoid glycoside 4-hydroxymyxol glycoside [aphanizophyll]) to chlorophyll a increased significantly more in C. raciborskii in comparison with A. gracile (1) with decreasing temperatures from 20 to 10°C and a moderate light intensity of 80?µmol photons m?2?s?1 and (2) with increasing light intensities at a suboptimal temperature of 15°C, compared to 20°C. We conclude that below 20°C photoinhibition is avoided by greater photoprotection in the invasive species C. raciborskii compared to the native species A. gracile.  相似文献   

16.
17.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

18.
Abstract

This paper describes two complexes containing N,N-dimethylproflavine and the dinucleoside monophosphate, 5-iodocytidylyl(3′-5′)guanosine (iodoCpG). The first complex is triclinic, space group PI, with unit cell dimensions a = 11.78 Å, b = 14.55 Å, c = 15.50 Å, a = 89.2°, β = 86.2°, γ = 96.4°. The second complex is monoclinic, space group P21, with a = 14.20 Å, b = 19.00 Å, c = 20.73 Å, β = 103.6°. Both structures have been solved to atomic resolution and refined by Fourier and least squares methods. The first structure has been refined anisotropically to a residual of 0.09 on 5,025 observed reflections using block diagonal least squares, while the second structure has been refined isotropically to a residual of 0.13 on 2,888 reflections with full matrix least squares. The asymmetric unit in both structures contains two dimethylproflavine molecules and two iodoCpG molecules; the first structure has 16 water molecules (a total of 134 non-hydrogen atoms), while the second structure has 18 water molecules (a total of 136 non-hydrogen atoms). Both structures demonstrate intercalation of dimethylproflavine between base-paired iodoCpG dimers. In addition, dimethylproflavine molecules stack on either side of the intercalated duplex, being related by a unit cell translation along b and a axes, respectively.

The basic structural feature of the sugar-phosphate chains accompanying dimethylproflavine intercalation in both structures is the mixed sugar puckering pattern: C3′ endo (3′-5′) C2′ endo. This same structural information is again demonstrated in the accompanying paper, which describes a complex containing dimethylproflavine with deoxyribo-CpG.

Similar information has already appeared for other “simple” intercalators such as ethidium, acridine orange, ellipticine, 9-aminoacridine, N-methyl-tetramethylphenanthrolinium and terpyridine platinum. “Complex” intercalators, however, such as proflavine and daunomycin, have given different structural information in model studies. We discuss the possible reasons for these differences in this paper and in the accompanying paper.  相似文献   

19.
The thermal stability of a highly purified preparation of D-amino acid oxidase from Trigonopsis variabilis (TvDAO), which does not show microheterogeneity due to the partial oxidation of Cys-108, was studied based on dependence of temperature (20–60°C) and protein concentration (5–100 µmol L?1). The time courses of loss of enzyme activity in 100 mmol L?1 potassium phosphate buffer, pH 8.0, are well described by a formal kinetic mechanism in which two parallel denaturation processes, partial thermal unfolding and dissociation of the FAD cofactor, combine to yield the overall inactivation rate. Estimates from global fitting of the data revealed that the first-order rate constant of the unfolding reaction (ka) increased 104-fold in response to an increase in temperature from 20 to 60°C. The rate constants of FAD release (kb) and binding (k?b) as well as the irreversible aggregation of the apo-enzyme (kagg) were less sensitive to changes in temperature, their activation energy (Ea) being about 52 kJ mol?1 in comparison with an Ea value of 185 kJ mol?1 for ka. The rate-determining step of TvDAO inactivation switched from FAD dissociation to unfolding at high temperatures. The model adequately described the effect of protein concentration on inactivation kinetics. Its predictions regarding the extent of FAD release and aggregation during thermal denaturation were confirmed by experiments. TvDAO is shown to contain two highly reactive cysteines per protein subunit whose modification with 5,5′-dithio-bis (2-nitrobenzoic acid) was accompanied by inactivation. Dithiothreitol (1 mmol L?1) enhanced up to 10-fold the recovery of enzyme activity during ion exchange chromatography of technical-grade TvDAO. However, it did not stabilize TvDAO at all temperatures and protein concentrations, suggesting that deactivation of cysteines was not responsible for thermal denaturation.  相似文献   

20.
An antigen-binding fragment (Fab) from a murine monoclonal antibody (4-4-20) with high affinity for fluorescein was cocrystallized with ligand in polyethylene glycol (PEG) and 2-methl-2,4-pentanediol (MPD) in forms suitable for X-ray analyses. In MPD the affinity of the intact antibody for fluorescein was 300 times lower than the value (3.4 × 1010 M?1) obtained in aqueous buffers. This decreased affinity was manifested by the partial release of bound fluorescein when MPD was added to solutions of liganded Feb during crystallization trials, In PEG, the ligand remained firmly bound to the protein. The liganded Feb crystallized in the monoclinic space group P21 in PEG, with a = 58.6, b = 97.2, c = 44.5 Å and β = 95.2°. In MPD the space group was triclinic P1, with a = 58.3, b = 43.4, c = 42.3 Å, α = 83.9°, β = 87.6°, and γ = 84.5°. X-ray diffraction data were collected for both forms to 2.5-Å resolution. Surprisingly, the triclinic form of the liganed antifluorescyl Feb had the same space group, closely similar cell dimensions, and practically the same orientation in the unit cell as an unliganded Fab (BV04-01) with activity against single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号