首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleophilic addition–elimination reaction of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N 2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N 2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutyl-ammonium periodate. A similar sequence of reactions of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(β-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N 2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2′,3′,5′-tri-O-acetyl[2-15N]guanosine. The corresponding 2′-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

2.
Abstract

Minor nucleosides found in several eukaryotic initiator tRNAsi Met, O-β-D-ribofuranosyl(1″→2′)adenosine and -guanosine (Ar and Gr), as well as their pyrimidine analogues, were obtained from N-protected 3′,5′-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)ribonucleosides and 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose in the presence of tin tetrachloride in 1,2-dichloroethane. A crystal structure has been solved for 2′-O-ribosyluridine. The 3′-phosphoramidites of protected 2′-O-ribosylribonucleosides were prepared as the reagents for 2′-O-ribofuranosyloligonucleotides synthesis. O-β-D-Ribofuranosyl(1″→2′)adenylyl(3′→5′)guanosine (ArpG) was obtained and its structure was analysed by NMR spectroscopy.

  相似文献   

3.
Abstract

Reactions using tri-n-butylphosphine and dialkyldisulfides have been investigated for the synthesis of several types of thiosugar nucleosides. Thus the reaction of N6-benzoyl-2′, 3′-O-isopropylideneadenosine with a large excess of diisobutyldisulfide leads, after simple deprotection, to the transmethylation inhibitor SIBA (3) in quite good yield. Using limiting amounts of disulfide, the reaction leads instead to a pyrimidine ring-opened cyclonucleoside (11). The hydrate of 2′, 3′-O-cyclohexylideneuridine 5′-aldehyde reacts with the same reagents to give a 77% yield of the corresponding diisobutyl dithioacetal. The hydrate of N6-benzoyl-2′, 3′-O-isopropylideneadenosine 5′-aldehyde, however, gave only a single diastereomer of the 5′-alkylthio derivative of 11.  相似文献   

4.
Various 1-nitroalkanes reacted with methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside to yield methyl 6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-β-d-ribofuranosides in 64–79% yield. Similarly, nitromethane and 1-nitropentane reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine-5′-aldehyde, to yield the corresponding 9-[6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-α-l-talo(β-d-allo)furanosyl]-N6-benzoyladenines in 74 and 44% yield, respectively. The potential utility of this nitroalkane addition for the synthesis of nucleosides having a C-5′C-6′ bond is discussed.  相似文献   

5.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   

6.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

7.
Synthesis of N 3,2′,3′-O-tris-(benzyloxycarbonyl)uridine and its use in the synthesis of 5′-O-(2-deoxy-α-d-glucopyranosyl)uridine is described. Simultaneous removal of benzyl and benzyloxycarbonyl groups was accomplished by catalytic transfer hydrogenolysis in the presence of Pearlman's catalyst without competing side reactions.  相似文献   

8.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

9.
Abstract

The synthesis of 4′-(hydroxymethyl)guanosine (7) and the phosphonate analogue 8 of guanylic acid proceed from a common intermediate, 2′, 3′-O-isopropylidene-N 2-(monomethoxytrityl)-guanosine-5′-aldehyde (13).  相似文献   

10.
Abstract

A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3′,4′,5′,5″- 2H 4 and -2′,3′,4′,5′,5″- 2H 5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-α,β-D-allofuranose-3,4-d 2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-α,β-D-ribofuranose-3,4,5,5′-d 4 16 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ) or to 1-O-methyl-3,5-di-O-benzyl-α,β-D-ribofuranose-3,4,5,5′-d 4 18 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ).  相似文献   

11.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

12.
We report a four-step synthesis of 2′-deoxy-2-deuteroadenosine from 2′-deoxyadenosine in 38% overall yield. The more accessible 2′-deoxy-8-deuteroadenosine was also prepared and incorporated into DNA by automated solid phase synthesis (80% deuterium) using N 6-benzoyl-2′-deoxy-8-deuteroadenosine-3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) in combination with acetyl-protected deoxycytidine and phenoxyacetyl-protected purine phosphoramidites.  相似文献   

13.
A simple and effective method of the methylation on the 2′-O position of adenosine is described. Adenosine is treated with CH3I in an anhydrous alkaline medium at 0°C for 4 h. The major products of this reaction are monomethylated adenosine at either the 2′-O or 3′-O position (total of 64%) and the side products are dimethylated adenosine (2′,3′-O-dimethyladenosi, 21%, and N6-2′-O-dimethyladenosine, 11%). The ratio of 2′-O- and 3′-O-methyladenosine has been found to be 8 to 1. Therefore, this reaction preferentially favors the synthesis of 2′-O-methyladenosine. The monomethylated adenosine is isolated from reaction mixture by a silica gel column chromatography. Then the pure 2′-O-methyladenosine can be separated by crystallization in ethanol from the mixture of 2′-O and 3′-O-methylated isomers. The overall yield of 2′-O-methyladenosine is 42%.  相似文献   

14.
Abstract

Acetylsalicylic acid (aspirin) reacted with adenosine, cytidine, guanosine and their 2′-deoxynucleosides to give acetylated nucleosides. Cytidine and 2′-deoxycytidine gave N4-acetylated nucleosides in nitromethane while in pyridine fully acetylated products were obtained. Adenosine and 2′-deoxyadenosine also gave fully acetylated products. However, guanosine and 2′-deoxyguanosine gave 2′,3′,5′-tri-O-acetylribosyl and 3′,5′-di-O-acetyl-2′-deoxyribosyl nucleosides, respectively. The corresponding aglycons also gave acetylated heterocycles under various conditions.  相似文献   

15.
Livers from fed male rats were perfused in vitro with O2′-monobutyryl guanosine 3′,5′-cyclic monophosphate. The output of triglyceride was reduced, while output of ketone bodies and glucose was stimulated by 10?4M monobutyryl guanosine 3′,5′-cyclic monophosphate. No effect was observed with 10?5 M nucleotide. Monobutyryl guanosine 3′,5′-cyclic monophosphate did not affect uptake of free fatty acids. In these respects, monobutyryl guanosine 3′,5′-cyclic monophosphate mimics the effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, although the guanylic nucleotide seems to be less potent than the adenosine 3′,5′-cyclic monophosphate derivative.  相似文献   

16.
The triphenylmethyl (Tr) group undergoes a transfer (transetherification or disproportionation) between the molecules of 5′-O-Tr-2′-deoxynucleosides in a process mediated by anhydrous sulfates of Cu+2, Fe+2, or Ni+2 to yield mixtures of 3′,5′-bis-O-Tr and 3′-O-Tr products. If phenylmethanol is present in a reaction medium, detritylation results with concomitant formation of phenylmethyl triphenylmethyl ether. The behavior of t-butyldimethylsilyl (TBDMS) group in 5′-O-TBDMS-2′-deoxynucleosides is exactly the same. Such type of transetherifications was not observed before for the O-Tr and O-TBDMS groups.  相似文献   

17.
Benzylidenation of β-maltose monohydrate with α,α-dimethoxytoluene in N,N-dimethylformamide in the presence of p-toluenesulfonic acid gave, in 70% yield, 4′,6′-O-benzylidenemaltose, which was acetylated to afford, 1,2,3,6,2′,3′-hexa-O-acetyl-4′,6′-O-benzylidene-β-maltose (4). Removal of the benzylidene group of 4 gave 1,2,3,6,2′,3′-hexa-O-acetyl-β-maltose (5), which was transformed into 1,2,3,6,2′,3′,4′-hepta-O-acetyl-6′-O-p-tolylsulfonyl-β-maltose (8). Several 6′-substituted β-maltose heptaacetates were synthesized by displacement reactions of 8 with various nucleophiles. Condensation of 5 with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl bromide, under catalysis by halide ion, followed by removal of protecting groups, furnished panose in good yield.  相似文献   

18.
Abstract

The synthesis of the blocked nucleoside 3′,5′-di-O-p-toluoyl-4-O-methyl-5-formylmethyl-2′-deoxyuridine (19) was accomplishied in eleven steps from gamma-butyrolactone. This aldehyde, which should facilitate the synthesis of nucleosides containing 18F, was converted to the corresponding blocked dithianyl nucleoside (21), and also to 5-(2,2-difluoroethyl)-substituted derivatives of 2′-deoxyuridine and 2′-deoxycytidine.  相似文献   

19.
ABSTRACT

The compound N3-benzoyl-3′,5′-O-(di-tert-butylsilanediyl)uridine 2 was alkylated with various alkyl iodides in CH3CN in the presence of base. Normal 2′-O-alkylated products were obtained with methyl or benzyl iodide. if hindered alkyl iodides with β-branching such as 2-ethylbutyl iodide were used as electrophiles under the same conditions, N3-alkyl-2′-O-benzoyl uridine derivatives were produced. This unexpected transformation is usually dormant with reactive alkylating agents, but expressed with sterically hindered, less reactive electrophiles. This unwanted reaction gives isomeric products whose spectra differ in only subtle ways from target compounds.  相似文献   

20.
Cyclic adenosine 3′,5′-monophosphate and N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate increase the accumulation of α-methyl-d-glucoside by cortical slices from rat, rabbit, dog and human kidney. The characteristics of the effect have been studied in rat tissue. At least 90 min of exposure of the tissue to cyclic nucleotide prior to onset of glucoside accumulation is required as well as presence of the cyclic nucleotide during the accumulation phase. Inhibition of protein synthesis does not abolish the effect of N6-2′-O-dibutyryl cyclic adenosine 3′,5′-monophosphate. The cyclic nucleotide causes an increase in the initial entry rate of α-methyl-d-glucoside into cells and an increase in the intracellular steady state concentration. The cyclic nucleotide does not affect the apparent Km of the glucoside entry process but increases the maximum velocity of accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号