首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AThermus strain, producing an extracellular protease, was isolated in a hot spring in Iceland. The main growth characteristics of this isolate were studied with different cultivation vessels and different cultivation techniques. A clear and striking dependence of the growth behavior on the cultivation technique was apparent. Higher maximum yield of biomass, higher productivity of biomass, and higher maximum growth rate were found in continuous cultivations compared with batch cultivations. The substrate utilization and the yield of biomass of this strain were much higher than reported for several otherThermus strains. Reproducibility of kinetic data seemed not to depend on the type of cultivation vessel, on the basis of the types of vessels tested, and instability of the population was not observed during cultivations. Production of extracellular protease in our cultivations was apparently growth associated in batch culture, and the specific rate of production in continuous culture was dependent of the dilution rate, implying that certain kinds of regulatory mechanism(s) might be involved.  相似文献   

2.
Intracellular pH (pH(i)) was measured on-line in a bioreactor using a fluorescent pH(i) indicator, 9-aminoacridine, and controlled fed-batch cultivations of yeast cells based on pH(i) (FB-pH(i)) were performed. In FB-pH(i) cultivations, automated glucose additions were made to the culture in response to culture pH(i). The average ethanol (an-aerobic product) yield was significantly lower [0.12 g g(-1) glucose in fed-batch pH(i) cultivations with 100 ppm glucose additions (FB-pH(i)-100 cultivation) vs. 0.48 g g(-1) glucose in batch] and cell yield was higher (0.54 g g(-1) glucose in FB-pH(i)-100 cultivation vs. 0.3 g g(-1) glucose in batch) compared to batch cultivation. An expression has been derived to calculate changes in pH(i) from measured fluorescence values when the cell concentration increases during growth. Cultivations based on pH(i), performed with different magnitudes of glucose addition (100, 50, and 10 ppm additions), showed that lower magnitudes of glucose addition resulted in lower ethanol yields while cell yield remained unaffected. The ratio of specific oxygen uptake rate to specific glucose uptake rate (OUR/GUR) increased with decreased in magnitude of glucose additions in FB-pH(i) cultivations, suggesting that the culture aerobic state was higher when the magnitude of glucose addition was lower. The average cell productivity in FB-pH(i) cultivations was 29% higher than in batch cultivation. Cells were also cultivated at high OUR conditions, and the results are compared with other cultivations. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
Summary A cultivation system is described for cultivatingStreptococcus lactis in continuous culture with complete cell recycle. The aim was to obtain high cell densities for the production of su-peroxide dismutase (SOD) while avoiding the growth inhibiting effects of the lactic acid produced. This type of cultivation was performed both at constant and at increasing dilution rates. Comparisons made include those between cell mass productivity and SOD productivity in recycling cultivations and batch cultivations. In the recycling cultivation at increasing dilution rates a cell mass of 19 g/1 was obtained after 22 h of cultivation and the SOD productivity was 43.103 U/1.h which is four times higher than for batch cultivations. The effect of recyclingS. lactis was also considered and no damage of the microorganisms was observed.  相似文献   

4.
Production of Extracellular Polysaccharide by Zoogloea ramigera   总被引:7,自引:2,他引:5       下载免费PDF全文
In batch cultures of Zoogloea ramigera the maximum rate of exopolysaccharide synthesis occurred in a partly growth-linked process. The exopolysaccharide was attached to the cells as a capsule. The capsules were released from the cell walls after 150 h of cultivation, which caused the fermentation broth to be highly viscous. Ultrasonication could be used to release capsular polysaccharide from the microbial cell walls. Treatment performed after 48 to 66 h of cultivation revealed exopolysaccharide concentration and apparent viscosity values in accordance with values of untreated samples withdrawn after 161 h of cultivation. The yield coefficient of exopolysaccharide on the basis of consumed glucose was in the range of 55 to 60% for batch cultivations with an initial glucose concentration of 25 g liter−1. An exopolysaccharide concentration of up to 38 g liter−1 could be attained if glucose, nitrogen, and growth factors were fed into the batch culture. The oxygen consumption rate in batch fermentations reached 25 mmol of O2 liter−1 h−1 during the exopolysaccharide synthesis phase and then decreased to values below 5 mmol of O2 liter−1 h−1 during the release phase. The fermentation broth showed pseudoplastic flow behavior, and the polysaccharide was not degraded when growth had ceased.  相似文献   

5.
Kinetic, studies were made on continuous cultivation applying the theory of microbial cell growth that was derived previously by the authors introducing the concepts of critical concentration and coefficient of consumption activity. General equations for microbial cell concentration for continuous cultivation in continuous-stirred tank and tubular type reactors were derived theoretically. Productivity of cell mass in continuous cultivation was analyzed kinetically and the behavior of mutant populations in continuous cultivation is briefly discussed.  相似文献   

6.
7.
Kinetics of fermentation processes   总被引:3,自引:0,他引:3  
Kinetic studies on fermentation processes were made and a general equation of production rate was newly presented applying the kinetic theory on mierobial cell growth which was reported previously by the authors.l,2 Equations for product concentration in fermentation time courses were derived by developing mathematically the general equation of production rate, and characteristic properties of fermentation processes were clarified. Some examples of fermentations were analyzed kinetically using the new kinetic theory. The calculated values of product, and cell concentrations were in good agreement with the observed values.  相似文献   

8.
Aim of the present study was to evaluate the effect of exogenous additions of 1,3-propanediol (1,3-PDO) on microbial growth and metabolites production of Clostridium butyricum VPI 1718 strain, during crude glycerol fermentation. Preliminary batch cultures in anaerobic Duran bottles revealed that early addition of 1,3-PDO caused growth cessation in rather low quantities (15?g/L), while 1,3-PDO additions during the middle exponential growth phase up to 70?g/L resulted in an almost linear decrease of the specific growth rate (μ), accompanied by reduced glycerol assimilation, with substrate consumption being used mainly for energy of maintenance requirements. During batch trials in a 3-L bioreactor, the strain proved able to withstand more than 70?g/L of both biologically produced and externally added 1,3-PDO, whereas glycerol assimilation and metabolite production were carried on at a lower rate. Adaptation of the strain in high 1,3-PDO concentration environments was validated during its continuous cultivation with pulses of 1,3-PDO in concentrations of 31 and 46?g/L, where no washout phenomena were noticed. As far as C. butyricum cellular lipids were concerned, during batch bioreactor cultivations, 1,3-PDO addition was found to favor the biosynthesis of unsaturated fatty acids. Also, fatty acid composition was studied during continuous cultures, in which additions of 1,3-PDO were performed at steady states. Lipids were globally more saturated compared to batch cultures, while by monitoring of the transitory phases, it was noticed that the gradual diol washout had an evident impact in the alteration of the fatty acid composition, by rendering them more unsaturated.  相似文献   

9.
The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures was examined, using on-line off-gas analyses to measure the oxygen and carbon dioxide consumption rates continuously. A cell suspension from continuous cultures at steady state was used as the inoculum. It was observed that a dynamic phase occurred in the initial phase of the experiment. In this phase the bacterial ferrous iron oxidation and growth were uncoupled. After about 16 h the bacteria were adapted and achieved a pseudo-steady state, in which the specific growth rate and oxygen consumption rate were coupled and their relationship was described by the Pirt equation. In pseudo-steady state, the growth and oxidation kinetics were accurately described by the rate equation for competitive product inhibition. Bacterial substrate consumption is regarded as the primary process, which is described by the equation for competitive product inhibition. Subsequently the kinetic equation for the specific growth rate, μ, is derived by applying the Pirt equation for bacterial substrate consumption and growth. The maximum specific growth rate, μ max, measured in the batch culture agrees with the dilution rate at which washout occurs in continuous cultures. The maximum oxygen consumption rate, q O2,max, of the cell suspension in the batch culture was determined by respiration measurements in a biological oxygen monitor at excess ferrous iron, and showed changes of up to 20% during the course of the experiment. The kinetic constants determined in the batch culture slightly differ from those in continuous cultures, such that, at equal ferric to ferrous iron concentration ratios, biomass-specific rates are up to 1.3 times higher in continuous cultures. Received: 8 February 1999 / Accepted: 17 February 1999  相似文献   

10.
The following general equation is proposed to represent the kinetics of microbial growth \documentclass{article}\pagestyle{empty}\begin{document}$$\phi (dR/dt) + \psi R + X = 0$$\end{document}, where phi and psi depend on several parameters of the fermenting system. The values of phi and psi were calculated based on results obtained in a batch lactic acid fermentation, a batch cultivation of yeast on diesel oil, and a continuous cultivation of yeast on sugarcane molasses.  相似文献   

11.
In industrial‐scale biotechnological processes, the active control of the pH‐value combined with the controlled feeding of substrate solutions (fed‐batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small‐scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale‐up and scale‐down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small‐scale batches are typically performed highly parallel and in high throughput, large‐scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber‐optic online‐monitoring device for microtiter plates (MTPs)—the BioLector technology—together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed‐batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user‐friendly and can easily be transferred to a disposable single‐use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH‐controlled and fed‐batch conditions in shaken MTPs. Biotechnol. Bioeng. 2010;107: 497–505. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Presently empirical expressions, especially the Monod equation, are used to quantitatively relate microbial growth rate to limiting substrate concentration in the solution. In this paper microbial growth is postulated to occur by a mechanism involving a mass transfer or assimilation process. The assimilation process is assumed to be substrate mass transfer limited and hence proportional to the limiting substrate concentration. The ingestion is assumed independent of limiting substrate concentration and only dependent upon internal reaction rates. The quantitative relationship between limiting substrate and microbial growth rate resulting from this mechanism is developed. Under certain limiting conditions this expression is shown to reduce to the Monod equation and under other conditions it reduces to the Lotka-Volterra relationship. This mechanism is applied to batch and continuous cultures and the results obtained are compared quantitatively with experiment.  相似文献   

13.
Pseudotype vectors are promising for gene transfer in many gene therapy approaches, however, low-vector concentration in batch cultures and high temperature-dependent decay do limit sufficiently large-scale production. To overcome these obstacles, the kinetic relations of cell growth and vector formation in different culture modes need to be understood. Effective optimisation of process modes is needed to achieve sufficient yields. Experimental and modelling studies were carried out in order to analyse the impact of different process modes such as perfusion, perfused fed-batch or repeated-batch on vector titer and productivity. Retroviral pseudotype vector, derived from the murine leukaemia virus carrying the HIV-1 envelop protein MLV (HIV-1) were produced using a 200 ml fixed bed reactor for high cell density cultivation on macroporous carriers. After starting the cultivation in batch mode, the reactor was either run in perfusion, perfused fed-batch or repeated-batch. A mathematical model of the bioreaction was developed on the basis of experimental data measured in culture dishes. The ability of the model to describe all different process modes of fixed-bed cultivation without additional fitting of the parameters was proven by three long-term cultivations for more than 400 h. The results of optimisation with the aid of the model, leads to the conclusion that perfusion with optimised harvest cycles and fed flows, result in a higher yield in comparison to batch or fed batch culture.  相似文献   

14.
Microalgae have been used to remove nitrogen, phosphorus, and chemical oxygen demand (COD) from brewery wastewater (BWW). The microalga Scenedesmus obliquus was grown on BWW, using bubble column photobioreactors that operated under batch and continuous regimes. For the first time, the cell physiological status cell membrane integrity and enzymatic activity was monitored during the microalgae based BWW treatment, using flow cytometry. All the cultivations batch and continuous displayed a proportion of cells with intact membrane >?87%, although the continuous cultivations displayed a lower proportion of cells with enzymatic activity (20–40%) than the batch cultivations (97%). The dilution rate of 0.26 day?1 was the most favorable condition, since the microalgae cultivation attained the maximum biomass productivity (0.2 g ash-free dry weight day?1) and the total nitrogen and COD removal rates were the highest (97 and 74%, respectively), while the phosphorous removal rate was the third (23%).  相似文献   

15.
On-line monitoring of hybridoma cell growth using a laser turbidity sensor   总被引:3,自引:0,他引:3  
A high-sensitivity turbidity probe was used for on-line monitoring of the cell concentration in batch hybridoma cultivation. Good correlation between off-line cell counts and the linearized sensor signal was found. The quality of the signal was sufficiently high to provide for on-line estimation of the specific growth rate using an efficient filtering procedure. These positive results suggest that such laser turbidity sensors will facilitate development of systems for on-line monitoring and control of animal cell cultivations. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
The effect was studied of oxygen supply on the changes in total and specific rate of oxygen consumption by the cells, oxygen transfer rate, saturation concentrations of dissolved oxygen and the yields of batch and continuous cultivations. Experiments were done on the microorganismKlebsiella aerogenes CCM 2318 growing on synthetic glucose medium. Continuous cultivations were carried out at dilution rates of 0.96 and 0.178 h−1. The rate of oxygen transfer was determined by the sulphite method and the coefficient KLa was assessed using the dynamic method with a correction for changes in the saturations of dissolved oxygen. A lowered oxygen supply in batch cultivations caused deformations in the course of cell respiration. Comparison of results of batch and continuous cultivations showed that the highest yields Yx/s and Yx/o are attained at low dilution rates without oxygen limitation. Batch cultivations, on the other hand, exhibit the lowest yields and the highest cell respiration levels. In both types of cultivations, a respiration peak was ascertained under the conditions of growth limitation by oxygen.  相似文献   

17.
Aerobic growth of Saccharomyces cerevisiae on glucose was investigated, focusing on the heat evolution as it relates to biomass and ethanol synthesis. “Aerobic fermentation” and “aerobic respiration” were established respectively in the experimental system by performing batch and fed-batch experiments. “Balanced growth” batch cultivations were carried out with initial sugar concentrations ranging from 10 to 70 g/L, resulting in different degrees of catabolite repression. The fermentative heat generation was continuously monitored in addition to the key culture parameters such as ethanol production rate, CO2 evolution rate, O2 uptake rate, specific growth rate, and sugar consumption rate. The respective variations of the above quantities reflecting the variations in the catabolic activity of the culture were studied. This was done in order to evaluate the microbial regulatory system, the energetics of microbial growth including the rate of heat evolution and the distribution of organic substrate between respiration and fermentation. This study was supported by closing C, energy, and electron balances on the system. The comparison of the fractions of substrate energy evolved as heat (δh) with the fraction of available electrons transferred to oxygen (?O2) indicated equal values of the two (0.46) in the aerobic respiration (fed-batch cultivation). However, the glucose effect in batch cultivations resulted in smaller ?O2 than δh, while both values decreased in their absolute values. The evaluation of the heat energetic yield coefficients, together with the fraction of the available electrons transferred to O, contributed to the estimation of the extent of heat production through oxidative phosphorylation.  相似文献   

18.
Aims:  To determine the underlying substrate utilization mechanism in the logistic equation for batch microbial growth by revealing the relationship between the logistic and Monod kinetics. Also, to determine the logistic rate constant in terms of Monod kinetic constants.
Methods and Results:  The logistic equation used to describe batch microbial growth was related to the Monod kinetics and found to be first-order in terms of the substrate and biomass concentrations. The logistic equation constant was also related to the Monod kinetic constants. Similarly, the substrate utilization kinetic equations were derived by using the logistic growth equation and related to the Monod kinetics.
Conclusion:  It is revaled that the logistic growth equation is a special form of the Monod growth kinetics when substrate limitation is first-order with respect to the substrate concentration. The logistic rate constant ( k ) is directly proportional to the maximum specific growth rate constant ( μ m) and initial substrate concentration ( S 0) and also inversely related to the saturation constant ( K s).
Significance and Impact of the Study:  The semi-empirical logistic equation can be used instead of Monod kinetics at low substrate concentrations to describe batch microbial growth using the relationship between the logistic rate constant and the Monod kinetic constants.  相似文献   

19.
The physiology of three strains of Aspergillus nidulans was examined--a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon sources on the alpha-amylase production in the creA deletion strain was investigated and it was found that starch was the best inducer. The degree of induction by starch increased almost linearly with the concentration of starch in starch/glucose mixtures. High-density batch cultivation was performed with the creA deletion strain and a final titre of 6.0 g l(-1) of alpha-amylase was reached after 162 h of cultivation.  相似文献   

20.
Multi-wavelength fluorescence spectroscopy was evaluated as a tool for on-line monitoring of recombinant Escherichia coli cultivations expressing human basic fibroblast growth factor (hFGF-2). The data sets for the various combinations of the excitation and emission spectra from batch cultivations were analyzed using principal component analysis. Chemometric models (the partial least squares method) were developed for correlating the fluorescence data and the experimentally measured variables such as the biomass and glucose concentrations as well as the carbon dioxide production rate. Excellent correlations were obtained for these variables for the calibration cultivations. The predictability of these models was further tested in batch and fed-batch cultivations. The batch cultivations were well predicted by the PLS models for biomass, glucose concentrations and carbon dioxide production rate (RMSEPs were respectively 5%, 7%, 9%). However, when tested for biomass concentrations in fed-batch cultivations (with final biomass three times higher than the highest calibration data) the models had good predictability at high growth rates (RMSEPs were 3% and 4%, respectively for uninduced and induced fed-batch cultivations), which was as good as for the batch cultivations used for developing the models (RMSEPs were 3% and 5%, respectively for uninduced and induced batch cultivations). The fed-batch cultivations performed at low growth rates exhibited much higher fluorescence for fluorophores such as flavin and NAD(P)H as compared to fed-batch cultivations at high growth rate. Therefore, the PLS models tended to over-predict the biomass concentrations at low growth rates. Obviously the cells changed their concentration of biogenic fluorophores depending on the growth rate. Although multi-wavelength fluorescence spectroscopy is a valuable tool for on-line monitoring of bioprocess, care must be taken to re-calibrate the PLS models at different growth rates to improve the accuracy of predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号