首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effective diffusivity of O2 inside immobilised cell particles has been much discussed. Most reported estimates are based on fitting a mass-transfer reaction model to measured total oxygen uptake rates. The particle diameter has the largest single influence in such models, but its accurate measurement has probably recieved insufficient attention. We have studied sorbitol and glucose oxidation by cells of Gluconobacter suboxydans entrapped in calcium alginate gel beads. These beads were found to shrink rapidly in air, so that size measurement under water is essential. By comparison with rigid particles of similar known size, it was shown that measurement of the microscopic image gives a systematic underestimate. In consequence, the fitted oxygen diffusivity will be around 20% too low. Careful attention to size measurement gave good agreement between diffusivity estimates from beads with different mean sizes and cell loadings, with a best value of 2.51 × 109 m2s–1, 92% of the value for pure water. The estimated diffusivity is not significantly affected by a distribution of bead sizes with up to 10% standard deviation about the same mean.  相似文献   

2.
The effects of polyethyleneimine, electrolyte concentration and pH on the electrophoretic mobility values for whole yeast, yeast homogenate and borax clarified homogenate were observed. The polyethyleneimine concentration at which there is optimum clarification of the borax-clarified homogenate corresponded to a mobility value of zero. Increased floc size up to the point of zero mobility was obtained by use of polyethyleneimine of larger molecular weight and also higher concentration. The effect of ageing under shear on the size of the flocs was examined and indicated reversibility of break-up at low shear rates while at higher shear rates the flocs were irreversibly broken. Such growth and ageing observations suggest floc formation comprises a two-stage process; the initial formation of primary particles by polymer bridging, and the subsequent formation of larger flocs as these primary particles are brought together by charge neutralisation.UCL is the Biotechnology and Biological Science Research Council sponsored Advanced Centre for Biochemical Engineering and we are grateful to the Council for financial support.  相似文献   

3.
The steady-state transport of oxygen through hemoglobin solutions   总被引:3,自引:3,他引:0       下载免费PDF全文
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated.  相似文献   

4.
Previous studies have established that hepatic mitochondria and submitochondrial particles from rats, fed ethanol chronically, display diminished respiratory activities and alterations in the contents of specific electron transfer chain components. The latter include a decrease of about 50% in cytochrome b content. Titrations of respiratory activity in submitochondrial particles with antimycin, a stoichiometric inhibitor of electron flow through the cytochrome b-c1 region of the respiratory chain, indicated a comparable decrease (35%) in the amount of antimycin required to elicit maximal inhibition (‘titer’) after chronic ethanol treatment. Measurements of antimycin binding to submitochondrial particles by fluorescence quenching demonstrated a similar diminution in the number of tight binding sites per mg protein. By contrast, hepatocytes isolated from control and ethanol-fed rats exhibited nearly identical rates of oxygen utilization under a variety of conditions. However, antimycin titrations of respiratory activity in isolated hepatocytes revealed a 60% decrease in the antimycin titer, but no change in the maximal extent of inhibition after chronic ethanol treatment. Direct measurements of cytochrome b which could be reduced in the presence of antimycin in hepatocytes confirmed a comparable decrease (42%) after chronic ethanol treatment. The results demonstrate that molecular alterations in the cytochrome b region of the respiratory chain caused by ethanol feeding are present in intact liver cells, but suggest that substrate accessibility, rather than the respiratory chain, limits the rate of oxygen utilization in isolated hepatocytes. The data also suggest that mitochondria account for at least 80% of total oxygen utilization by liver cells from both control and ethanol-fed rats.  相似文献   

5.
A mathematical model has been developed which describes substrate removal, oxygen utilization, and biomass production in an aggregated microbial suspension containing the substrate as a soluble biodegradable material and a uniform floc size. It is applicable to both steady-state and transient conditions. The model, consisting of three partial differential equations and two ordinary differential equations, takes into account the flow pattern in the reactor, intraparticle mass transport of oxygen and substrate, and biochemical reaction by individual cells embedded in the floc. Efficient numerical solution of the coupled nonlinear equations is obtained using an implicit finite difference approach for both the reactor and floc equations. A convergent solution is realized through block interation utilizing the tridiagonal algorithm. Results indicate that a unifying theory of activated sludge dynamics will have to consider coupling between floc chemical kinetics and changes in the bulk liquid characteristics. Floc size emerges as an important influence on system performance. It appears necessary to distinguish between a system response caused by diffuslonal resistances and nutrient limitations within the floc and a response caused by physiological adaption when analyzing the transient behavior of an activated sludge process. Future research should be devoted to rigorous laboratory determinations of model parameters along with extensions to include limitations of nutrients other than orgabnic carbon and oxygen.  相似文献   

6.
A continuous symbiotic algal-bacterial system was developed consisting essentially of a mixed Chlorella-activated sludge culture which would efficiently remove nutrients from wastewater under aerobic conditions without supplementary aeration. Oxygen decline data were fitted to a mathematical model used to predict respiratory rates, photosynthetic oxygenation, and steady-state oxygen concentrations. Stable relative biological populations and a dissolved oxygen concentration of about 2 mg/1 were maintained during steady-state operation with daily harvesting of excess biomass. Respiratory and physiological relationships indicated that the carbon dioxide-oxygen balance is a primary control that governs the steady-state operation of a symbiotic algal-bacterial culture. The close association of the algae and bacteria resulted in an algal-bacterial floc with settled rapidly yielding a clear supernatant.  相似文献   

7.
Summary The oxygen production rates for a cyanobacterial suspension flowing in straight and coiled tubes were measured to find a way of achieving higher efficiency of light utilization by means of convective mixing. The photosynthetic flow chambers were made of glass tubes and illumination was by fluorescent light. The cyanobacterium used was Spirulina platensis, which has a high growth rate. The oxygen production rate for fluid flow in straight and coiled tubes increase with the increase in Reynolds number. The maximum oxygen production rate was achieved at 30°C for both tube reactors, but the oxygen production rate was higher for the coiled tube unit than the straight tube unit at 30°C. Thus the convective mixing generated in the coiled tube reactor contributed to an increased in light utilization, which played an important part in improving the oxygen production rate. Offprint requests to: K. Tanishita  相似文献   

8.
Mitochondrial production of oxygen radicals seems to be involved in many diseases and aging. Recent studies clearly showed that a substantial part of the free radical generation of rodent mitochondria comes from complex I. It is thus important to further localize the free radical generator site within this respiratory complex. In this study, superoxide production by heart and nonsynaptic brain submitochondrial particles from up to seven mammalian species, showing different longevities, were studied under different conditions. The results, taking together, show that rotenone stimulates NADH-supported superoxide generation, confirming that complex I is a source of oxygen radicals in mammals, in general. The rotenone-stimulated NADH-supported superoxide production of the heart and nonsynaptic brain mammalian submitochondrial particles was inhibited both by p-chloromercuribenzoate and by ethoxyformic anhydride. These results localize the complex I oxygen radical generator between the ferricyanide and the ubiquinone reduction site, making iron—sulfur centers possible candidates, although unstable semiquinones can not be discarded. The results also indicate that the previously described inverse correlation between rates of mitochondrial oxygen radical generation and mammalian longevity operates through mechanisms dependent on the presence of intact functional mitochondria.  相似文献   

9.
The optimization of microbial flocculation for subsequent biomass separation must relate the floc properties to separation process criteria. The effects of flocculant type, dose, and hydrodynamic conditions on floc formation in laminar tube flow were determined for an Escherichia coli system. Combined with an on-line aggregation sensor, this technique allows the flocculation process to be rapidly optimized. This is important, because interbatch variation in fermentation broth has consequences for flocculation control and subsequent downstream processing. Changing tube diameter and length while maintaining a constant flow rate allowed independent study of the effects of shear and time on the flocculation rate and floc characteristics. Tube flow at higher shear rates increased the rate and completeness of flocculation, but reduced the maximum floc size attained. The mechanism for this size limitation does not appear to be fracture or erosion of existing flocs. Rearrangement of particles within the flocs appears to be most likely. The Camp number predicted the extent of flocculation obtained in terms of the reduction in primary particle number, but not in terms of floc size. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
Alginate-entrapped cells of Mucuna pruriens L. hydroxylate L -tyrosine, tyramine, para-hydroxyphenylpropionic acid, and para-hydroxyphenylacetic acid to their corresponding catechols, which were released into the incubation medium. Michaëlis-Menten kinetics was applied for each bioconversion. The apparent affinity constants were comparable with the affinity constants obtained with a homogenate directly prepared from the cells used for entrapment and with a derived partly purified phenoloxidase. The values found for the apparent maximum rates of bioconversion of the entrapped cells were ca. 50% of the values of the maximum rates of bioconversion of the cell homogenate, indicating that the entrapped cell system was not operating optimally. The effective diffusivities of the substrates and products were measured with alginate-entrapped, inactivated cells. From the five inactivation methods tested, glutaric aldehyde treatment was chosen as the general procedure. Calculated effective diffusivities for the monophenols and catechols demonstrated that these compounds could diffuse freely into and out of the beads. For each bioconversion, the observable modulus was calculated from the initial rate of bioconversion and the effective diffusivity of the substrate. The resulting values indicated that the diffusional supply rate of the substrates was not the limiting factor, except for the conversion of tyramine for which a modulus higher than one was obtained. Analogously, the observable moduli were calculated for oxygen, which was utilized for bioconversion and cell respiration, and these values pointed towards strong oxygen limitation in all cases. The bioconversion rates of the entrapped cells increased with decreasing cell aggregate size. Therefore, it was concluded that direct cell-matrix contact determined the amount of phenoloxidase involved in the bioconversions. The bioconversion rate on a protein basis was constant with enhancement of the bead charge and thus, in spite of limitations, the mixing conditions as such were relatively optimal. In conclusion, the nonoptimal efficiency of the plant cell system studied was caused by oxygen limitation and a partial phenoloxidase participation, but not by mass transfer limitations for substrates and products with the exception of the conversion of tyramine into dopamine.  相似文献   

11.
Flocculating agents are used as auxiliary to recover bacterial cells in downstream processes for polyhydroxyalkanoate production. However little is known about the Curpiavidus necator flocs. In this work a new procedure for floc characterization through digital image analysis is presented and validated using the batch settling test. Average diameter, particle size distribution and morphological characteristics of the microbial aggregates were obtained from the flocculation/sedimentation process of the Cupriavidus necator DSM 545 cells by the use of tannin as flocculating agent. The experimental results demonstrated that the proposed method is adequate to determine the average floc diameter with values around 150 μm in accordance with the value obtained from the batch settling test. Nevertheless a morphological characterization of Cupriavidus necator DSM 545 bioaggregates in terms of size distribution and regularity could only be performed by an image analysis procedure. The procedure allowed us to describe the regularity of bacterial flocs through the quantification of morphological parameters of Euclidean [convexity (Conv) and form factor (FF)] and fractal geometry [surface fractal dimension (D BS)], which are important factors to be considered in the settling efficiency of aggregates.  相似文献   

12.
The intrinsic kinetics of continuous yeast cell growth and ethanol production for a self-flocculating fusant yeast strain SPSC01 was investigated by means of mechanically dispersing the flocs and correspondingly established floc size distribution on-line monitoring technique using the focused beam reflectance measurement system, through which the floc intra-particle mass transfer limitation was effectively eliminated, but its ethanol formation metabolism was not affected. Modified kinetic models were developed, which can be used to predict the continuous kinetic behaviors of SPSC01, especially when low dilution rates are applied and limiting substrate concentrations are undetectable and almost all kinetic models developed previously are failed in predicting corresponding kinetic behaviors. Both substrate and product inhibitions reported for freely suspended yeast cell ethanol production were also observed for SPSC01 when high gravity media were fed and relatively high levels of residual sugar and ethanol presented. Model parameters were evaluated through numerical calculation method and validated by experimental data mu = 0.584C(s)/0.155 + C(s) + C(2)(s)/160.7(1 -P/125)(3.68) + 0.004 for growth, nu = 1.998C(s)/0.427 + C(s) + C(2)(s)/366.7(1- P/125)(1.72) + 0.060 for ethanol production These intrinsic kinetic models can be further used to develop the observed kinetic models that quantitatively correlate the impact of the self-flocculating yeast cell size distributions on their apparent rates for yeast cell growth, substrate uptake and ethanol production and optimize the ethanol production process.  相似文献   

13.
This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.  相似文献   

14.
In situ technologies were employed to monitor suspended particle flocculation and floc settlement and utilization by a cohort of sea scallops (Placopecten magellanicus) during the 2000 spring phytoplankton bloom in Bedford Basin, Nova Scotia, Canada. The objectives were to determine the effect of bloom flocculation and settling on food acquisition and utilization by scallops, and to assess the potential role of flocculation in enhancing the bioavailability of trophic resources and particle-reactive contaminants to bivalve filter feeders. The development and flocculation of the phytoplankton bloom were monitored within the surface layer (10 m depth) by in vivo chlorophyll fluorescence and silhouette camera observations. Sedimentation rate, seston abundance and composition, and sea scallop functional responses were monitored at 20 m depth (below the bloom) to provide insight into the potential forcing of feeding and digestion processes by changes in the abundance, composition and properties of the ambient food supply. The bloom began in mid-March and median floc diameter at 10 m depth increased rapidly from 200 μm to greater than 400 μm between 21 and 28 March. Flocs were observed to be abundant in the surface layer up to 4 April. Daily vertical particle flux was high during the last week of March and declined to near zero by 1 April. Clearance rates of scallops held at 20 m depth were relatively high (average ± S.D.; 11.7 ± 4.0 L h− 1) during the period of bloom settlement and declined rapidly to low levels (0.4 ± 0.9 L h− 1) after 31 March. Average absorption efficiency also declined (0.88 ± 0.01 to 0.78 ± 0.05) after bloom settlement. Daily biodeposition rates by scallops were poorly correlated with temporal variations in the quantity (total particulate matter and chlorophyll a concentration) or quality (organic content) of seston available to the scallops, but were significantly correlated with sedimentation rate. Comparison of disaggregated inorganic particle size distributions for suspended particulate matter, settled particles, and scallop feces indicated that fine-grained particles (1 to 4 μm) were effectively ingested by sea scallops—an indication of whole floc ingestion. The settlement of flocs produced during the spring bloom appears to be important in regulating this species physiological energetics and for enhancing the bioavailablility of fine particles (including picoplankton) and particle-reactive contaminants.  相似文献   

15.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K m and V max, were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K m values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V max,app>V max). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

16.
Measuring Floc Structural Characteristics   总被引:1,自引:0,他引:1  
A review is presented of a range of techniques for the structural characterisation of flocs. Flocs may be considered as highly porous aggregates composed of smaller primary particles. The irregular size and shape of flocs makes them difficult to measure and quantify. A range of different equivalent diameters are often used to define the floc size and allow comparison with other floc systems. The application of a range of floc sizing methods has been described. Microscopy is time consuming, requiring large sample size and considerable preparation but gives good information on floc shape and form. Light scattering and transmitted light techniques have been used to good effect to measure floc size on-line whilst individual particle sensors have limited applicability to measuring floc size. Fractal dimension can be measured using one of three major techniques: light scattering, settling and two dimensional (2D) image analysis. Light scattering is ideally suited for small, open flocs of low refractive index whilst settling may be applied to most floc systems of low porosity. 2D image analysis requires flocs to have good contrast between the solid in the floc and the background.  相似文献   

17.
Abstract Reports on the capability of wood-feeding termites (WFTs) in degrading wood particles and on the existence of aerobic environment in the localized guts suggest that their high efficiency of cellulose utilization is not only caused by cellulase, but also by biochemical factors that pretreat lignin. We thus extend the hypothesis that for highly efficient accessibility of cellulose, there should be direct evidence of lignin modification before the hindgut. The lignin degradation/modification is facilitated by the oxygenated environment in intestinal microhabitats. To test our hypothesis, we conducted experiments using a dissolved oxygen microelectrode with a tip diameter < 10 μm to measure oxygen profiles in intestinal microhabitats of both Coptotermes formosanus (Shiraki) and Reticulitermes flavipes (Kollar). Lignin modification during passage through their three gut segments was also analyzed with pyrolysis gas chromatography/mass spectrometry. The data showed relatively high levels of oxygen in the midgut that could have promoted lignin oxidation. Consistent with the oxygen measurements, lignin modifications were also detected. In support of previously proposed hypotheses, these results demonstrate that lignin disruption, which pretreats wood for cellulose utilization, is initiated in the foregut, and continues in the midgut in both termites.  相似文献   

18.
During wastewater treatment, biofilm-coated sand particles stratified in a fluidized bed bioreactor (FBB); particles coated by thicker biofilm segregated toward the top of the bed. Stratification was so well developed that at least two co-existing regions of significantly different mean biofilm thickness were visually distinct within the operating FBB. The observed stratification is attributed to differences in forces of drag, buoyancy, shear, and collisional impact, as well as differences of collision rate within the different regions. Particles with thick biofilm (thickness >100 μm) near the top of the bed consumed substrate at significantly lower rates per unit biomass than particles with thin biofilm (10-20 μm) near the bottom of the bed, thereby suggesting that substrate mass-transfer resistance through biofilm may limit biodegradation rates in the upper portion of the FBB. Large agglomerates of biomass floc and sand, which formed at the top of the fluidized bed, and sand particles with thick biofilm were susceptible to washout from the FBB, causing operational and treatment instability. Radial injection of supplemental liquid feed near the top of the bed increased shear and mixing, thereby preventing formation and washout of agglomerates and thickly coated sand particles. Supplemental liquid injection caused the mean specific biomass loading on the sand to increase and also increased the total biomass inventory in the FBB. Rates of biodegradation in the FBB appeared to be limited by penetration of substrates into the biofilm and absorption of oxygen from air into the wastewater. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

19.
Summary Two strains of Clostridium thermocellum ATCC 27405 and NRCC 2688 demonstrated similar product yields and cellulase activities when grown on solka floc. A sequential culture of C. thermocellum and Zymomonas anaerobia supplemented with cellobiase could produce 1.8 mg/ml of ethanol when grwon on 1% solka floc. Different media were evaluated for their ability to enhance the product and cellulase yields of C. thermocellum grown on cellulose substrates. Ethanol and reducing sugar values of 1.5 and 3.8 mg/ml respectively and an endoglucanase activity of 3 IU/ml were obtained after growth of Clostridium thermocellum in a modified medium containing 1% solka floc. Three different pretreated wood fractions were assessed as substrates for growth. A steam exploded wood fraction gave comparable values to those obtained after growth on solka floc. Sequential cultures of C. thermocellum and Zymomonas anaerobia grown on a 1% steam exploded wood fraction could produce 1.6 mg/ml ethanol after 3 days growth.  相似文献   

20.
Abstract A mass spectrometer with membrane inlet was used to measure methane and oxygen utilization rates at various methane concentrations in Methylosinus trichosporium and a locally isolated strain of a methane-oxidizing coccus (OU-4-1). The apparent K m for methane was found to be 2 μM for M. trichosporium and 0.8 μM for strain OU-4-1. These K m-values are 10–30 times lower than most previously reported values. The ratio of oxygen to methane utilization rates was 1.7 for M. trichosporium and 1.5 for strain OU-4-1 corresponding to a growth yield of 0.38 and 0.63 g dry weight/g methane, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号