首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural characteristics and thermostability of human hemoglobin molecules modified by rheopolyglucin and dialdehydedextrane have been studied. The influence of mixture pH, the exposure time, and temperature of incubation and the rate of dextrane oxidation on the intensity of conjugation of human hemoglobin with dialdehydedextrane has been estimated. Optimal conditions for the binding of hemoglobin to dialdehydedextrane have been determined. The formation of the hemoglobin- dialdehydedextrane complex leads to the shielding of protein chromophore groups by the polysaccharide matrix and the transformation of a part of hemoproteid molecules from the low-spin form (HbO2) to high-spin forms (Hb, MetHb). It has been found that the temperature of denaturation transition for the native protein and hemoglobin in the presence of rheopolyglucin is 60 degrees C, and that for the hemoglobin-dialdehydedextrane conjugate is 80 degrees C. The latter is probably determined by the enhancement of hydrophobic interactions inside the protein globule under the effect of dialdehydedextrane and by the ability of the externally-bound carbohydrate components to prevent the association of hemoglobin molecules.  相似文献   

2.
The thermostabilization of penicillin G acylase (PGA) obtained from a mutant of Escherichia coli ATCC 11105 by cross-linking with dextran dialdehyde molecules, at a molecular mass of 11 500, 37 700 and 71 000 Da, was studied. The thermal inactivation mechanisms of the native and modified PGA were both considered to obey first-order inactivation kinetics during prolonged heat treatment, forming fully active but temperature-sensitive transient states. The highest enhancement to the thermostability of PGA was obtained using dextran-71000-dialdehyde modification, as a␣nearly ninefold increase at temperatures above 50 °C. The modification of PGA by dextran-11500-dialdehyde resulted in a considerable reduction of the V m and K m parameters of the enzyme. However, other dextran dialdehyde derivatives used for modification did not cause a meaningful change in either V m and K m. Modification by dextran dialdehyde derivatives did not result in significant change to either the optimal temperature or the activation energy of PGA. All modified PGA preparations showed lower inactivation rate constants but higher half-lives for inactivation than those of the native PGA at all temperatures studied. As indicated by the half-life times and k i values, dextran 71000-dialdehyde was found to be more effective at cross-linking in the thermo-stabilization of PGA than any other agent studied in this work. Received: 3 December 1996 / Received revision: 17 March 1997 / Accepted: 22 March 1997  相似文献   

3.
We studied the temperature-dependent effects of intramolecular interactions on the mutual diffusion coefficient of normal human oxygenated hemoglobin in salt solution. We used photon correlation spectroscopy to observe this temperature dependence of the mutual diffusion coefficient of two protein concentrations (1.25 and 17.0 g %) between 13 and 37°C. This coefficient was our probe for monitoring temperature-dependent structural changes of hydrated hemoglobin in solution. Comparison of our measured diffusion coefficient with that predicted by the Stokes-Einstein relationship in terms of solvent or solution viscosity showed a clear transition in the conformation of hemoglobin at approximately 22°C, independent of the hemoglobin concentration. We postulated that at this physiological temperature, a considerable quaternary rearrangement of the hemoglobin chains takes place. We believe this rearrangement changes the effective volume and the hydration sphere of the hemoglobin macromolecule.  相似文献   

4.
Factor IX and protein C are zymogens implicated in blood clotting, and an increase in their plasmatic residence time would be of interest for the treatment of the disorders caused by their deficiency. In this context, the conjugation of these proteins to polymers such as modified dextrans could be used to approach the problem. Conjugate formation in concentrated medium ([protein]>50 g/L) is well documented, whereas drastic dilution ([protein] <1 g/L) is quite unfavorable. Before studying the binding of factor IX and protein C to polymers, the coupling of model proteins (human hemoglobin, Hb; human serum albumin, HSA) in low-concentration medium to benzenetetracarboxylate dextran (BTC-dextran) and dialdehyde dextran was investigated. To obtain soluble benzenetetracarboxylate dextran-based conjugates, the conditions of coupling were optimized; the use of sulfo-NHS was necessary to form a conjugate with benzenetetracarboxylate dextran. In fact, the O-acylurea intermediate formed between coupling agent [l-ethyl-3(3-dimethylaminopropyl) carbodiimide, EDC] and BTC-dextran must be stabilized. Concerning dialdehyde dextran, a more oxidized polymer and a higher pH of the buffer of coupling than for highly concentrated solution must be used to obtain a conjugate. Whatever polymer is used, HSA appeared clearly less reactive than Hb, which can be attributed to the better reactivity of N-terminal amino groups in this latter protein and to the marked affinity of benzenetetracarboxylate dextran for it. No soluble conjugate was formed between the same dextran derivatives and factor IX or protein C. Moreover, the activity of both coagulation factors was dramatically decreased by contact with EDC and glutaraldehyde, a small molecule. Thus, bad accessibility of protein amino groups is probably responsible for this lack of reactivity. Nevertheless, it could be shown that carboxylate and amino groups were essential to the activity of factor IX and protein C.  相似文献   

5.
The objectives of this study were to investigate the moisture-induced protein aggregation of whey protein powders and to elucidate the relationship of protein stability with respect to water content and glass transition. Three whey protein powder types were studied: whey protein isolate (WPI), whey protein hydrolysates (WPH), and beta-lactoglobulin (BLG). The water sorption isotherms were determined at 23 and 45°C, and they fit the Guggenheim–Andersson–DeBoer (GAB) model well. Glass transition was determined by differential scanning calorimeter (DSC). The heat capacity changes of WPI and BLG during glass transition were small (0.1 to 0.2 Jg−1 °C−1), and the glass transition temperature (T g) could not be detected for all samples. An increase in water content in the range of 7 to 16% caused a decrease in T g from 119 down to 75°C for WPI, and a decrease from 93 to 47°C for WPH. Protein aggregation after 2 weeks’ storage was measured by the increase in insoluble aggregates and change in soluble protein fractions. For WPI and BLG, no protein aggregation was observed over the range of 0 to 85% RH, whereas for WPH, ∼50% of proteins became insoluble after storage at 23°C and 85% RH or at 45°C and ≥73% RH, caused mainly by the formation of intermolecular disulfide bonds. This suggests that, at increased water content, a decrease in the T g of whey protein powders results in a dramatic increase in the mobility of protein molecules, leading to protein aggregation in short-term storage.  相似文献   

6.
Human red blood cells (RBCs) exhibit sudden changes in their biophysical properties at body temperature (T B). RBCs were seen to undergo a spontaneous transition from blockage to passage at T C = 36.4 ± 0.3°C, when the temperature dependency of RBC-passages through 1.3 μm narrow micropipettes was observed. Moreover, concentrated hemoglobin solutions (45 g/dl) showed a viscosity breakdown between 36 and 37°C. With human hemoglobin, a structural transition was observed at T B as circular dichroism (CD) experiments revealed. This leads to the assumption that a species’ body temperature occupies a unique position on the temperature scale and may even be imprinted in the structure of certain proteins. In this study, it was investigated whether hemoglobins of species with a T B different from those of human show temperature transitions and whether those were also linked to the species’ T B. The main conclusion was drawn from dynamic light scattering (DLS) and CD experiments. It was observed that such structural temperature transitions did occur in hemoglobins from all studied species and were correlated linearly (slope 0.81, r = 0.95) with the species’ body temperature. We presumed that α-helices of hemoglobin were able to unfold more readily around T B. α-helical unfolding would initiate molecular aggregation causing RBC passage and viscosity breakdown as mentioned above. Thus, structural molecular changes of hemoglobin could determine biophysical effects visible on a macroscopic scale. It is hypothesized that the species’ body temperature was imprinted into the structure of hemoglobins.  相似文献   

7.
The intensity of pyrene excimer fluorescence in human erythrocyte membranes and in sonicated dispersions of the membrane lipid (liposomes) was examined as a function of pressure (1–2080 bar) and temperature (5–40°C). Higher pressure or lower temperature decreased the excimer/monomer intensity ratios. A thermotropic transition was detected in both membranes and liposomes by plots of the logarithm of the excimer/monomer intensity ratio versus 1/K. The transition temperature of the membranes was 19–21°C at 1 bar and 28–31°C at 450 bar, a shift with pressure of approx. 20–22 K per kbar. Corresponding transition temperatures of the liposomes were 21°C at 1 bar and 33°C at 450 bar, a shift of approx. 27 K per kbar. The observed pressure dependence of the thermotropic transition temperature is similar to that reported for phospholipid bilayers and greatly exceeds that of protein conformation changes. In concert with the liposome studies the results provide direct evidence for a lipid transition in the erythrocyte membrane.  相似文献   

8.
A dextranase (EC 3.2.1.11) was purified and characterized from the IP-29 strain of Sporothrix schenckii, a dimorphic pathogenic fungus. Growing cells secreted the enzyme into a standard culture medium (20 °C) that supports the mycelial phase. Soluble bacterial dextrans substituted for glucose as substrate with a small decrease in cellular yield but a tenfold increase in the production of dextranase. This enzyme is a monomeric protein with a molecular mass of 79 kDa, a pH optimum of 5.0, and an action pattern against a soluble 170-kDa bacterial dextran that leads to a final mixture of glucose (38%), isomaltose (38%), and branched oligosaccharides (24%). In the presence of 200 mM sodium acetate buffer (pH 5.0), the K m for soluble dextran was 0.067 ± 0.003% (w/v). Salts of Hg2+, (UO2)2+, Pb2+, Cu2+, and Zn2+ inhibited by affecting both V max and K m. The enzyme was most stable between pH values of 4.50 and 4.75, where the half-life at 55 °C was 18 min and the energy of activation for heat denaturation was 99 kcal/mol. S. schenckii dextranase catalyzed the degradation of cross-linked dextran chains in Sephadex G-50 to G-200, and the latter was a good substrate for cell growth at 20 °C. Highly cross-linked grades (i.e., G-10 and G-25) were refractory to hydrolysis. Most strains of S. schenckii from Europe and North America tested positive for dextranase when grown at 20 °C. All of these isolates grew on glucose at 35 °C, a condition that is typically associated with the yeast phase, but they did not express dextranase and were incapable of using dextran as a carbon source at the higher temperature. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

9.
The NMR technique of 13C off-resonance rotating frame spin-lattice relaxation, which provides an accurate assessment of the effective rotational correlation time (τ0,eff) for macromolecular rotational diffusion, was applied to the study of γ-crystallin association as a function of protein concentration and temperature. Values of the effective rotational correlation time for γ-crystallin rotational diffusion were obtained at moderate to high protein concentrations (80–350 mg/ml) and at temperatures above, and below, the cold cataract phase transition temperature. With increasing concentration γ-crystallin was observed to increasingly associate as reflected by larger values of τ0,eff Decreasing temperature in the range of 35 to 22°C was found to result in no change in the temperature corrected value of τ0,eff at a γ-crystallin concentration of 80 mg/ml, whereas at temperatures of 18°C or below, this parameter was approx. twofold larger, suggesting the occurrence of a well defined phase transition, which correlated well with the cold cataract phase transition temperature. At higher protein concentrations, by contrast, τ0,eff (temperature corrected) was found to increase by approx. 1.6- to 2-times in the temperature interval 35°C to 22°C, a result consistent with the dependence of the cold cataract phase transition temperature on γ-crystallin concentration. Analysis of intensity ratio dispersion curves, using an assumed model of isodesmic association, permitted the estimation of the association constant characterizing the aggregation under particular conditions of concentration and temperature. The significant increase in the value of the association constant with moderate increases in protein concentration was rationalized by invoking the effect of ‘macromolecular crowding’. The results obtained in this study suggest that in the intact lens, where high protein concentrations prevail, γ-crystallin is unlikely to be found in the monomeric state, but more likely, as a significantly aggregated species, representing a broad molecular weight distribution.  相似文献   

10.
The temperature and cell volume dependence of the NMR water proton linewidth, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon dexygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters only slightly by a 10–20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the “bound” water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at ?15°C to 500 Hz at ?36°C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at ?35°C for measurements at 44.4 MHz and ?50°C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irratationally bound water, is altered during the sickling process.  相似文献   

11.
Abstract

Phase transitions were studied of the sodium salt of poly(rA) ?poly(rU) induced by elevated temperature without Ni2+ and with Ni2+ in 0.07 M concentration in D2O (~0.4 [Ni]/[P]). The temperature was varied from 20° C to 90° C. The double-stranded conformation of poly(rA)?poly(rU) was observed at room temperature (20° C—23° C) with and without Ni2+ ions. In the absence of Ni2+ ions, partial double- to triple-strand transition of poly(rA) ?poly(rU) occurred at 58° C, whereas only single-stranded molecules existed at 70° C. While poly(rU) did not display significant helical structure, poly(rA) still maintained some helicity at this temperature. Ni2+ ions significantly stabilized the triple-helical structure. The temperature range of the stable triple-helix was between 45° C and 70° C with maximum stability around 53° C. Triple-to single-stranded transition of poly(rA) ?poly(rU) occurred around 72° C with loss of base stacking in single-stranded molecules. Stacked or aggregated structures of poly(rA) formed around 86° C. Hysteresis took place in the presence of Ni2+ during the reverse transition from the triple-stranded to the double-stranded form upon cooling. Reverse Hoogsteen type of hydrogen-bonding of the third strand in the triplex was suggested to be the most probable model for the triple-helical structure. VCD spectroscopy demonstrated significant advantages over infrared absorption or the related electronic CD spectroscopy.  相似文献   

12.
The hydrogen–deuterium exchange reaction for the tryptophan residues in lysozyme have been followed in 4.5M LiBr at pH 7.2 in the temperature range of the unfolding transition by measuring the transmittance change at 293 nm. The exchange reaction proceeded in three phases at low temperature for native protein. The first and the second phases were ascribed to the H-D exchange reactions of three relatively exposed tryptophan residues on the molecular surface. The third phase corresponded to the H-D exchange reaction of the three tryptophan residues buried in the interior of the molecule. The H-D exchange reaction proceeded in two phases near the melting temperature and in a single phase at high temperature, where almost all molecules are unfolded. The H-D exchange of three tryptophan residues buried in folded molecules was caused by fluctuation between the folded and unfolded structure of the protein molecule. The rates of such a fluctuation were determined from the rates of the exchange reaction at various temperatures. These rates agreed very well with those determined from the temperature-jump method. This means that a protein molecule in solution fluctuates between the N- and D-states at every temperature within the transition region, where the N-form is the tightly folded native structure and the D-form the randomly coiled chain. From measurements of thermal unfolding of ester-108-lysozyme and the binding constant of (NAG)3 to ester-108-lysozyme, it was found that almost all cross-linked molecules are in the folded state near 50°C and pH 7.2 in 4.5M LiBr, where intact molecules are unfolded. We also studied the H-D exchange reaction of ester-108-lysozyme. In the temperature region of 43–50°C, about 70% of the exchangeable tryptophan residues of ester-108-lysozyme were exchanged within 1 s immediately after the mixing of D2O, in spite of the fact that almost all molecules are in the folded state. This was considered the premelting of the surface of a corss-linked molecule.  相似文献   

13.
The hypothesis of a correlation between a 10°–20°C lipid phase transition and the resealing process of human erythrocyte membrane has been investigated. The conditions required to reseal human erythrocyte ghosts have been studied by measuring the amount of fluorescein-labeled dextran (FD) that is trapped into the membrane. Temperature per se was sufficient to induce membrane resealing: (1) at 5 mM sodium phosphate, pH 7.8 (5P8), resealing began at 12°C; (2) at salt concentrations above 8 mM sodium phosphate, it occurred at lower temperature; and (3) in isotonic saline was detected just above 5°C. The removal of peripheral membrane proteins from unsealed membranes by chymotrypsin at 0°C in 5P8 was followed by membrane resealing. This seems to imply that the presence of proteins is necessary to maintain the membrane unsealed. Protein-induced lateral phase separation of lipids may be a reasonable mechanism for the observed phenomena. In fact, the permeability of phosphatidylserine-phosphatidylcholine mixed liposomes to FD is modified by lipid lateral phase separation induced by pH or poly-L-lysine. Electron spin resonance studies of membrane fluidity by a spin labeled stearic acid showed a fluidity break around 11°C, which may be due to a gel–liquid phase transition. Fluidity changes are abolished by chymotrypsin treatment. It is suggested that a lateral phase separation is responsible for the permeability of open ghosts to FD. Accordingly, disruption of phase separation apparently produces membrane reconstitution. In this respect peripheral proteins and particularly the spectrin-actin network, may play a major role in membrane resealing.  相似文献   

14.
B Lubas  T Wilczok 《Biopolymers》1971,10(8):1267-1276
The molecular mobility of calf thymus DNA molecules in solution has been discussed in terms of correlation time τ calculated from measurements of longitudinal T1 and transverse T2 magnetic relaxation times. The influence of DNA concentration and ionic strength of the solution upon freedom of movement of DNA molecules was studied for native and denatured DNA and also during thermal helix-coil transition. The dependence of τ values on temperature was carried out by comparing the values of correlation times τtat given temperature with the correlation time τ20 at 20°C. The molecular rotation of DNA at 20°C and at higher ionic strength at 0.15 and 1.0.M NaCl is described by τ values of the order of 1.0–1.2 × 10?8 and was reduced slightly with increase of temperature below the helix-coil transition. The molecular rotation of DNA in 0.02MNaCl was lower at 20°C as compared to DNA in solvents with higher NaCl concentrations and increases rapidly with increase of temperature in the range 20–60°C. The values of correlation time are characterized by fast increase at temperatures above the spectrophotometrically determined beginning of melting curve. The beginning of this increase is observed at about 65, 80, and 85°C for DNA in 0.02, 0.15, and 1.0MNaCl, respectively. Values of correlation time for denatured DNA are in all cases about 1.1–1.4 times that for native DNA. The obtained results are discussed in terms of conformation of DNA molecules in solution as well as in terms of water dipole binding in DNA hydration shells.  相似文献   

15.
Porphyromonas gingivalis, an obligate anerobe with a growth requirement for iron protoporphyrin IX (FePPIX), is exposed to increased temperatures in the inflamed periodontal pocket. In this study, P. gingivalis was grown in a chemostat at 37°C (control), 39°C, and 41°C, and examined for hemagglutinating (HA) activity, hemoglobin binding and degrading activity, and iron protoporphyrin IX binding. HA activity decreased in cells as the growth temperature increased. Binding of μ-oxo bishaem (dimeric haem), and Fe(II)- and Fe(III)-monomeric forms was increased in 39°C-grown cells but decreased in 41°C-grown cells compared with controls. Cellular hemoglobin binding and degradation decreased with increased growth temperature. The decrease in cellular hemagglutination and hemoglobin degradation occurring with increased growth temperature would limit the potential overproduction of toxic monomeric haem molecules. The increased binding of μ-oxo bishaem and monomeric forms of FePPIX at 39°C may reflect a defense strategy against reactive oxidants and a mechanism of dampening down the inflammatory response to maintain an ecological balance. Received: 24 April 2000 / Accepted: 30 May 2000  相似文献   

16.
Abstract

Biocatalysis with hydroperoxide lyase (HPL) in extracts from Penicillium camemberti, in neat organic solvent media has been investigated. The effects of reaction conditions including organic solvent mixtures, initial water activity (aw) and reaction temperature as well as the effect of the lyoprotectants, KCl and dextran 1 kDa, on HPL activity were studied. The addition of KCl to the enzymatic extract (70:1 protein, w/w) prior to lyophilization, enhanced HPL activity 6.53-fold. In contrast, the presence of dextran at a ratio of 8:1 decreased the enzymatic activity. Using hexane as the reaction medium, with an initial aw of 0.1 and 0.5, the HPL specific activity was determined to be as 6.3 and 65.9 nmol converted 10-HPOD/mg protein/min, for the enzymatic extract without and with KCl present, respectively. Although HPL enzymatic extract with KCl showed a relatively low optimum reaction temperature (45°C) compared to 55°C without KCl, it exhibited a 2.51- and 2.78-fold higher thermal stability at 60 and 80°C, respectively. The kinetic results indicated that the highest HPL catalytic efficiency, Vmax/Km, of 6.58 × 10?2 mL/mg protein/min, was obtained in the presence of KCl.  相似文献   

17.
The successive enthalpy changes for the four steps of oxygen binding by diphosphoglycerate-free adult human hemoglobin have been measured by direct calorimetry at pH 7.4 and 6°. Average results in kcal/(mole O2) are: ΔH1 = ?25.1 ± 2.8; ΔH2 = ?12.6 ± 3.0, ΔH3 = ?12.5 ± 3.0, and ΔH4 = ?10.1 ± 1.4. These results imply a substantial temperature dependence for the cooperativity of O2 binding by the protein and generally resemble the van't Hoff results by Roughton et al. [Roy. Soc. of London Proc., B 144, 29 (1955)] for sheep hemoglobin at pH 9.1 and a temperature range of 2° to 19°.  相似文献   

18.
Sedimentation velocity runs as a function of temperature in the region of the alkaline helix-coil transition have enabled us to demonstrate the existence of stable two-stranded intermediates in the strand-separation process for T7 DNA. The strand-separation transition under these conditions has an intrinsic breadth of ~1°C, and within this temperature range (Tm + 2°C < T < Tm + 3°C) the intermediate forms are progressively converted (as a function of temperature) to single-stranded DNA. Parallel characterizations of the strand-separation transition by viscosity and absorbance–renaturation studies in the alkaline solvent are entirely consistent with the sedimentation experiments. Comparison of the experimental mean sedimentation coefficient of the intermediate forms with theoretical predictions for branched structures suggests that in these molecules the two strands are connected at a single point, not centrally located with respect to the ends of the molecule.  相似文献   

19.
《Carbohydrate polymers》1997,33(1):19-26
Commercial potato amylose was used to study temperature effects on the retrogradation of amylose solutions (3.5mg/ml). The retrogradation rate decreased as incubation temperature increased (5 to 45 °C). The degree of retrogradation within 24 h decreased from 58.8 to 7.1% as incubation temperature increased from 5 to 45 °C. In the amylose solution, different-sized molecular subfractions retrograded at different rates. After incubating at 5 °C for 100 days, the majority of the amylose molecules retrograded and precipitated from the solution; at 45 °C, only amylose of the small-molecular subfraction (number average, DPn = 110; weight average, DPw = 150) retrograded and precipitated. Entanglement of molecules was observed in size exclusion chromatograms. The morphology of retrograded amylose observed by using a scanning electron microscope differed with the retrogradation temperature. The chain length of amylose crystalline segments, prepared by hydrolysis of retrograded amylose, showed a narrow distribution (polydispersity from 1.21 to 1.67). The chain lengths of resistant segments increased DPn from 39 to 52 and DPw from 47 to 72 for α-amylolysis and DPn from 34 to 40 and DPw from 48 to 67 for 16% sulfuric acid hydrolysis, when incubation temperature increased from 5 to 45 °C.  相似文献   

20.
Previously we have shown that human red blood cells (RBCs) undergo a sudden change from blocking to passing through a 1.3±0.2-µm micropipette when applying an aspiration pressure of 2.3 kPa at a critical transition temperature (Tc=36.4±0.3 °C). Low-shear viscosity measurements suggested that changes in the molecular properties of hemoglobin might be responsible for this effect. To evaluate structural changes in hemoglobin at the critical temperature, we have used circular dichroism (CD) spectroscopy. The thermal denaturation curves of human hemoglobin A (HbA) and hemoglobin S (HbS) upon heating between 25 and 60 °C were non-linear and showed accelerated denaturation between 35 and 39 °C with a midpoint at 37.2±0.6 °C. The transition was reversible below 39 °C and independent of solution pH (pH 6.8–7.8). It was also independent of the oxygenation state of hemoglobin, since a sample that was extensively deoxygenated with N2 showed a similar transition by CD. These findings suggest that a structural change in hemoglobin may enable the cellular passage phenomenon as well as the temperature-dependent decrease in viscosity of RBC solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号