首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetragonal layer protein (T-layer) isolated from Bacillus sphaericus NTCC 9602 (wild type) or 9602 Lmw (variant) bonded specifically to the sacculi (peptidoglycan) of either cell type. Only uncleaved T-layer subunits were capable of specific recognition of the B. sphaericus sacculi; other Bacillus strains and gram-positive bacterial sacculi would not adsorb B. sphaericus strain 9602 T-layer. The peptidogylcan did not function as a template since isolated T-layer subunits self-assembled into characteristic pattern. Upon reassociation with sacculi, T-layer assemblies were randomly oriented patches compared with more continuous strictly oriented pattern on cells or fresh cell walls. T-layer associated with the sacculus was less susceptible to conditions that dissociated in vitro-assembled T-layer. Mild proteolysis of both wild-type and variant T-layer subunits by a variety of enzymes reduced the molecular weight by 18,000 in all cases, indicating that one region of the molecule was particularly susceptible to cleavage. Subunits from which the minor fragment had been cleaved upon aging retained the capacity to assemble in vitro, but would no longer adsorb to sacculi. Thus, the ability of T-layer to form networks was separate from its ability to bind cell walls, and the 18,000-dalton piece of the T-layer polypeptide was necessary for attachment to the cell wall.  相似文献   

2.
The outermost layer of the cell wall of Bacillus sphaericus strain P-1 is a tetragonally arrayed structure (T-layer) which is assembled from a single polypeptide. No turnover of T-layer was detected during growth of cultures. In contrast, the turnover of peptidoglycan was between 20 and 25% per generation. The sites of deposition of new T-layer on the cell surface were identified by the indirect fluorescent antibody technique, which labeled old T-layer, and by the reverse technique, which labeled new T-layer. These experiments demonstrated that the major area of T-layer deposition was a band at the site of an incipient cell division. This band subsequently split and covered the new pole of each progeny cell. Little or no T-layer was inserted into existing poles. In addition, multiple bands of new T-layer, which probably accommodate cell elongation, were inserted along the lateral surface of the cell.  相似文献   

3.
The tetragonally arranged cell wall layer (T-layer) of Bacillus sphaericus NTCC 9602 was isolated and characterized. Parallel studies were made on a spontaneous variant of the wild-type strain which had a T-layer subunit of altered molecular weight. A purification method for the T-layers was devised which involved separation of the cell walls from the cytoplasmic contents, urea dissociation of the T-layer from the cell walls, removal of soluble contaminants by differential centrifugation, and finally selective adsorption of uncleaved subunits to sacculi. The purified subunits retained the capacity to form an assembly in vitro with the same lattice parameters as that observed on whole cells or cell walls and could readsorb to the cell walls from which they had been extracted. Both the wild-type and the variant subunits behaved as single, homogeneous polypeptide chains. Carbohydrate assay and isoelectric point determinations revealed that both subunit types were acidic glycoproteins. Values obtained for thebuoyant density, isoelectric point, and extinction coefficient differed minimally; major differences were observed in the molecular weight and the characterisitc width of cylinders formed by in vitro-assembled T-layer of the wild-type and variant. Assembled T-layer was subject to alkaline or acid dissociation and in acid titration dissociated at its isoelectric point.  相似文献   

4.
Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate that the matrix of the rigid wall layer inhibits the assembly of the S-layer subunits which are in transit to the outside.  相似文献   

5.
The morphology of peptidoglycan layer of Rhizobium cell wall was examined by transmission electron microscopy. Peptidoglycans were isolated from intact cells after treatment with sodium dodecyl sulfate, extraction with aqueous 45% phenol and then with a mixture of chloroform-methanol. Finally rigid layers were digested with trypsin and chymotrypsin. The results indicate the presence of lump or bar-like structures on the surface of the cell shaped peptidoglycan sacculi. Evidence is provided suggesting that the cellulose microfibrils arise directly from these excrescences found on the peptidoglycan surface. Digestion with cellulase removed all cellulose microfibrils whereas the lumps and bars remained as an integral part of the Rhizobium peptidoglycan.  相似文献   

6.
The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate of protein synthesis, increased during the latter part of the division cycle. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Prior to the start of constriction the cell surface increases only by lateral wall extension. After cell constriction starts, the cell surface increases by both lateral wall and pole growth. The increase in surface area is partitioned between the lateral wall and the pole so that the volume of the cell increases exponentially. No variation in cell density occurs, because the increase in surface allows a continuous exponential increase in cell volume that accommodates the exponential increase in cell mass. The results are consistent with the constant density of the growing cell and the surface stress model for the regulation of cell surface synthesis. In addition, the elution pattern suggests that the membrane elution method does work by having the cells effectively bound to the membrane by their poles.  相似文献   

7.
The muropeptide composition of peptidoglycan from Escherichia coli W7 cultivated at different growth rates in chemostat cultures was compared by using high-pressure liquid chromatography. At a low growth rate (D = 0.1 h-1), about 40% more covalently bound lipoprotein and at least twofold more diaminopimelyl-diaminopimelic acid cross-bridges were found than at a high growth rate (D = 0.8 h-1). The total degree of cross-linkage was only slightly increased, and the fraction of trimeric muropeptides and the average length of the glycan chains were not changed significantly. Analysis of the peptidoglycan from a morphological variant strain of W7 revealed that the altered peptidoglycan composition in slowly growing W7 cells was not correlated with the observation that these cells, due to their decreased cell length, were relatively enriched in polar material. In fact, our results suggested that peptidoglycan forming cell poles is chemically identical to that forming lateral wall.  相似文献   

8.
The cell wall structure of the Gram-positive Corynebacterium glutamicum was evaluated by electron microscopy of thin sections after freeze-substitution and conventional fixation with glutaraldehyde. For the cell wall an overall thickness of approximately 32 nm was determined, with 8.5 nm corresponding to an outer layer, 6.5 nm to an electron translucent region (ETR) as found in mycobacteria and 17 nm to the peptidoglycan. Knob-like surface structures previously observed in freeze-fracture experiments were detected when cells were conventionally processed with a fixation using glutaraldehyde. By mild treatment with detergents approximately 20 proteins were extracted from the cell wall. From seven of these N-terminal amino acid sequences were determined.  相似文献   

9.
The insertion of newly synthesized lipoprotein molecules into the cell wall of Escherichia coli was studied topographically by immunoelectron microscopy. Lipoprotein was briefly induced with isopropyl-beta-D-thiogalactopyranoside in cells carrying lac-lpp on a low-copy-number plasmid in an E. coli lpp host. Specific antibodies bound to the newly inserted lipoprotein molecules, which were exposed at the cell surface after treatment of the cells with Tris-EDTA, were detected with a protein A-gold probe. The average distribution of the gold particles over the cell surface of noninduced cells was determined for cells induced for 5 and 10 min. Analysis of 250 to 350 cells showed that the distribution of newly synthesized lipoprotein over the cell surface was homogeneous in both cases. The binding of lipoprotein to the peptidoglycan layer was studied by the same technique, and visual inspection again revealed a homogeneous distribution of bound lipoprotein over the entire sacculus surface. It is therefore concluded that free lipoprotein is inserted equally over the entire cell wall of E. coli, while binding to peptidoglycan also occurs over the entire cell surface. The rate of lipoprotein synthesis increased with cell length in nondividing cells, whereas it was constant in cells which had initiated constriction. Analysis of cells having different amounts of lipoprotein in their cell wall revealed that the cell shape depended on the total lipoprotein content of the cell. Cells having no or only a small amount of lipoprotein grew as spheres, whereas cells with increasing numbers of lipoprotein molecules gradually changed their shape to short rods.  相似文献   

10.
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.  相似文献   

11.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

12.
Surface proteins of Staphylococcus aureus are covalently linked to the bacterial cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. Cleavage between the threonine and the glycine of the LPXTG motif liberates the carboxyl of threonine to form an amide bond with the amino of the pentaglycine cross-bridge in the staphylococcal peptidoglycan. We asked whether antibiotic cell wall synthesis inhibitors interfere with the anchoring of surface proteins. Penicillin G, a transpeptidation inhibitor, had no effect on surface protein anchoring, whereas vancomycin and moenomycin, inhibitors of cell wall polymerization into peptidoglycan strands, slowed the sorting reaction. Cleavage of surface protein precursors did not require a mature assembled cell wall and was observed in staphylococcal protoplasts. A search for chemical inhibitors of the sorting reaction identified methanethiosulfonates and p-hydroxymercuribenzoic acid. Thus, sortase, the enzyme proposed to cleave surface proteins at the LPXTG motif, appears to be a sulfhydryl-containing enzyme that utilizes peptidoglycan precursors but not an assembled cell wall as a substrate for the anchoring of surface protein.  相似文献   

13.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

14.
The reassembly of tetragonally arranged subunits in the cell wall of Lactobacillus brevis and the reattachment of the subunits to cell wall fragments were investigated by electron microscopy. The subunits dissociated from the cell wall with guanidine hydrochloride (GHCl) reassembled into the same regular array as seen in the native cell wall after dialysis against neutral buffer even in the absence of specific cations. The subunits could also reattach to the cell wall fragments from which they had been removed by treatment with GHCl, sodium dodecyl sulfate or cold trichloroacetic acid but not to those treated with hot formamide. Heterologous reattachment of the subunits occurred on cell wall fragments obtained from L. fermentum but not on those from L. plantarum or L. casei subsp. casei. On the basis of these observations and chemical analyses of the cell wall fragments, the subunits of L. brevis appeared to be bound by hydrogen bonds to a neutral polysaccharide moiety in the cell wall but not to peptidoglycan or teichoic acid.  相似文献   

15.
Cell separation in Bacillus subtilis depends on specific activities of DL-endopeptidases CwlS, LytF and LytE. Immunofluorescence microscopy (IFM) indicated that the localization of LytF depended on its N-terminal LysM domain. In addition, we revealed that the LysM domain efficiently binds to peptidoglycan (PG) prepared by chemically removing wall teichoic acids (WTAs) from the B. subtilis cell wall. Moreover, increasing amounts of the LysM domain bound to TagB- or TagO-depleted cell walls. These results strongly suggested that the LysM domain specifically binds to PG, and that the binding may be prevented by WTAs. IFM with TagB-, TagF- or TagO-reduced cells indicated that LytF-6xFLAG was observed not only at cell separation site and poles but also as a helical pattern along the sidewall. Moreover, we found that LytF was localizable on the whole cell surface in TagB-, TagF- or TagO-depleted cells. These results strongly suggest that WTAs inhibit the sidewall localization of LytF. Furthermore, the helical LytF localization was observed on the lateral cell surface in MreB-depleted cells, suggesting that cell wall modification by WTAs along the sidewall might be governed by an actin-like cytoskeleton homologue, MreB.  相似文献   

16.
17.
A monoclonal antibody (mAb KT4), produced against a Pichia anomala killer toxin, was used to study the secretion process of toxin producing cells. The indirect immunofluorescence assay, performed with large concentrations of mAb KT4, showed a homogeneous distribution of the epitope at the cell surface of the P anomala cells. When increasing dilutions of mAb KT4 were employed, a 'punctuated' labeling appeared on the yeast's cell wall which suggested a heterogeneous secretion of the killer toxin. Similar labeling was also observed by immunodetection on live yeast cells held in buffered suspension. These results confirmed that 'punctuated' labeling was not an artefact due to a distortion of the cell's shape by having been dried on glass slides. Indirect immunodetection was performed in electron microscopy on ultra-thin sections of cells embedded in Araldite resin. The labeling thus obtained showed both the presence of the epitope in the cytoplasm and its sensitivity to strong glutaraldehyde fixation. Indirect immunodetection, performed on ultra-thin frozen sections, showed a cytoplasmic and cell wall labelling. However, the amount of gold particles observed in the cell wall was too low to confirm the heterogeneous killer toxin secretion observed in immunofluorescence. In this case, killer cells were fixed with a low concentration of glutaraldehyde which preserved the structure of the epitope complementary with mAb KT4.  相似文献   

18.
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms.  相似文献   

19.
Partly autolyzed, osmotically stabilized cells of Bacillus subtilis W23 synthesized peptidoglycan from the exogenously supplied nucleotide precursors UDP-N-acetylglucosamine and UDP-N-acetylmuramyl pentapeptide. Freshly harvested cells did not synthesize peptidoglycan. The peptidoglycan formed was entirely hydrolyzed by N-acetylmuramoylhydrolase, and its synthesis was inhibited by the antibiotics bacitracin, vancomycin, and tunicamycin. Peptidoglycan formation was optimal at 37 degrees C and pH 8.5, and the specific activity of 7.0 nmol of N-acetylglucosamine incorporated per mg of membrane protein per h at pH 7.5 was probably decreased by the action of endogenous wall autolysins. No cross-linked peptidoglycan was formed. In addition, a lysozyme-resistant polymer was also formed from UDP-N-acetylglucosamine alone. Peptidoglycan synthesis was inhibited by trypsin and p-chloromercuribenzenesulfonic acid, and we conclude that it occurred at the outer surface of the membrane. Although phospho-N-acetylmuramyl pentapeptide translocase activity was detected on the outside surface of the membrane, no transphosphorylation mechanism was observed for the translocation of UDP-N-acetylglucosamine. Peptidoglycan was similarly formed with partly autolyzed preparations of B. subtilis NCIB 3610, B. subtilis 168, B. megaterium KM, and B. licheniformis ATCC 9945. Intact protoplasts of B. subtilis W23 did not synthesize peptidoglycan from externally supplied nucleotides although the lipid intermediate was formed which was inhibited by tunicamycin and bacitracin. It was therefore considered that the lipid cycle had been completed, and the absence of peptidoglycan synthesis was believed to be due to the presence of lysozyme adhering to the protoplast membrane. The significance of these results and similar observations for teichoic acid synthesis (Bertram et al., J. Bacteriol. 148:406-412, 1981) is discussed in relation to the translocation of bacterial cell wall polymers.  相似文献   

20.
Pili of Gram-negative pathogens are formed from pilin precursor molecules by non-covalent association within the outer membrane envelope. Gram-positive microbes employ the cell wall peptidoglycan as a surface organelle for the covalent attachment of proteins, however, an assembly pathway for pili has not yet been revealed. We show here that pili of Corynebacterium diphtheriae are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals and SpaC seems positioned at the pilus tip. Assembled pili are released from the bacterial surface by treatment with murein hydrolase, suggesting that the pilus fibres may be anchored to the cell wall envelope. All three pilin subunit proteins are synthesized as precursors carrying N-terminal signal peptides and C-terminal sorting signals. Some, but not all, of the six sortase genes encoded in the genome of C. diphtheriae are required for precursor processing, pilus assembly or cell wall envelope attachment. Pilus assembly is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side chain amino groups of pilin motif sequences to generate links between pilin subunits. This covalent tethering of adjacent pilin subunits appears to have evolved in many Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号