首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A markedly reduced blood flow, an elevation of hematocrit and an increased aggregability of erythrocytes [red blood cells (RBCs)] are risk factors for venous thrombus formation (intravascular blood coagulation). However, these risk factors alone seem to be insufficient to stimulate the coagulation cascade in the absence of a primary triggering mechanism. In this paper, our rheological and biochemical studies on blood coagulation, especially focusing on procoagulant activity of RBCs, are summarized. It is shown that the intrinsic coagulation pathway is triggered by the activation of factor IX (F-IX) by RBCs. The F-IX-activating enzyme in normal human erythrocyte (RBC) membranes was purified, identified and characterized. The activation of F-IX by RBCs was enhanced by a decrease in flow shear rate and an elevation in hematocrit. The procoagulant ability of RBCs and coagulation of blood obtained from individuals with a relatively high level of hypercoagulability were enhanced compared with those for normals. The studies demonstrated a new triggering mechanism for coagulation or thrombus formation that may occur under stagnant flow conditions.  相似文献   

2.
Phase disturbances of coagulation blood potential were revealed in experiments on white rats in dynamics of rapidly progressing form of botulinic intoxication, intoxication being caused by intraperitoneal injection of type C toxin. In preclinical period of intoxication activation of procoagulant and anticoagulant parts of hemostasis system, as well as fibrinolysis system, was noted. Similar shifts were revealed in the developmental period of generalized pareses of skeletal musculature. Only in the terminal stage of intoxication insufficiency of mechanism in formation of prothrombinase activity developed by simultaneous activation of anticoagulant mechanism and fibrinolysis system.  相似文献   

3.
The results of this paper indicate that cattle infected with B. bovis (argentina) have a markedly altered and activated coagulation system. A degree of thrombin activation occurs due partly to release of thromboplastin-like substances from lysed erythrocytes but due primarily to activation of kallikrein by babesial proteases. This produces a hyperfibrinogenaemia, particularly in intact cattle, with soluble fibrin complexes constituting up to one-third of the total fibrinogen concentration. High molecular weight non-coagulable fibrinogen-like proteins are detected terminally but more so in splenectomized cattle. Plasminogen concentration decreases in splenectomized but not intact cattle while low molecular weight fibrinogen degradation products are not easily detected. It is suggested that a hypercoagulable intermediate state with little or no fibrin deposition occurs rather than terminal disseminated intravascular coagulation.  相似文献   

4.
Islet and hepatocyte transplantation are associated with tissue factor-dependent activation of coagulation which elicits instant blood mediated inflammatory reaction, thereby contributing to a low rate of engraftment. The aim of this study was i) to evaluate the procoagulant activity of human adult liver-derived mesenchymal progenitor cells (hALPCs), ii) to compare it to other mesenchymal cells of extra-hepatic (bone marrow mesenchymal stem cells and skin fibroblasts) or liver origin (liver myofibroblasts), and iii) to determine the ways this activity could be modulated. Using a whole blood coagulation test (thromboelastometry), we demonstrated that all analyzed cell types exhibit procoagulant activity. The hALPCs pronounced procoagulant activity was associated with an increased tissue factor and a decreased tissue factor pathway inhibitor expression as compared with hepatocytes. At therapeutic doses, the procoagulant effect of hALPCs was inhibited by neither antithrombin activators nor direct factor Xa inhibitor or direct thrombin inhibitors individually. However, concomitant administration of an antithrombin activator or direct factor Xa inhibitor and direct thrombin inhibitor proved to be a particularly effective combination for controlling the procoagulant effects of hALPCs both in vitro and in vivo. The results suggest that this dual antithrombotic therapy should also improve the efficacy of cell transplantation in humans.  相似文献   

5.
In addition to their well-recognized role in immune defense, there is a growing recognition that the proteins of the complement system impact directly on vascular homeostatic mechanisms, evoking cellular responses that serve to both promote adherence of blood cells to the walls of blood vessels, and the formation of fibrin through the enzyme mechanisms of the coagulation system. This clot-promoting or ‘procoagulant’ activity initiated through the complement system entails both receptor-mediated as well as receptor-independent pathways of cell activation. In this review, I will focus specifically upon the role that is now thought to be played by the membrane attack complex of the complement system (MAC) in the induction of the procoagulant properties of human platelets and endothelium.  相似文献   

6.
Procoagulant activities of different types and structures of collagen were examined. Collagens used were types I (including its methylated and succinylated forms), II, III, IV and V. Each collagen was coated on an inner surface of a glass tube. The change of fluidity during coagulation of blood in the tube was measured by means of a new rheological technique. For monomeric collagen, the procoagulant activity of the succinylated form (negatively charged) was higher than that of the methylated form (positively charged). The procoagulant activity of type IV (dry) was lower than that of other types of collagen. For fibrillar collagens, the initiation of coagulation for type V (non-banded) was fairly delayed compared to those for types I, II and III (banded). An increase in water content in both monomeric and fibrillar forms promoted procoagulant activity. For most of the collagen forms, the addition of factor XII inhibitor (Polybrene) to blood brought about a remarkable delay of the initiation of coagulation, suggesting that the activation of factor XII on the collagen surface is one of main factors governing procoagulant activity. In addition, our data suggest that large numbers of adherent platelets to the collagen surface promote activation of the intrinsic coagulation system.  相似文献   

7.
Enzymes activated by monovalent cations are abundantly represented in plants and in the animal world. The mechanism, of activation involves formation of a ternary intermediate with the enzyme-substrate complex, or binding of the cation to an allosteric site in the protein. Thrombin is a Na+-activated enzyme with procoagulant, anticoagulant and signaling roles. The binding of Na+ influences allosterically thrombin function and offers a paradigm for regulatory control of protease activity and specificity. Here we review the molecular basis of thrombin allostery as recently emerged from mutagenesis and structural studies. The role of Na+ in blood coagulation and the evolution of serine proteases are also discussed.  相似文献   

8.
BACKGROUND: While it is established that mechanical heart valves (MHVs) damage blood elements during leakage and forward flow, the role in thrombus formation of platelet activation by high shear flow geometries remains unclear. In this study, continuously recalcified blood was used to measure the effects of blood flow through orifices, which model MHVs, on the generation of procoagulant thrombin and the resulting formation of thrombus. The contribution of platelets to this process was also assessed. METHOD OF APPROACH: 200, 400, 800, and 1200 microm orifices simulated the hinge region of bileaflet MHVs, and 200, 400, and 800 microm wide slits modeled the centerline where the two leaflets meet when the MHV is closed. To assess activation of coagulation during blood recirculation, samples were withdrawn over 0-47 min and the plasmas assayed for thrombin-antithrombin-llI (TAT) levels. Model geometries were also inspected visually. RESULTS: The 200 and 400 microm round orifices induced significant TAT generation and thrombosis over the study interval. In contrast, thrombin generation by the slit orifices, and by the 800 and 1200 microm round orifices, was negligible. In additional experiments with nonrecalcified or platelet-depleted blood, TAT levels were markedly reduced versus the studies with fully anticoagulated whole blood (p < 0.05). CONCLUSIONS: Using the present method, a significant increase in TAT concentration was found for 200 and 400 microm orifices, but not 800 and 1200 microm orifices, indicating that these flow geometries exhibit a critical threshold for activation of coagulation and resulting formation of thrombus. Markedly lower TAT levels were produced in studies with platelet-depleted blood, documenting a key role for platelets in the thrombotic process.  相似文献   

9.
Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects.  相似文献   

10.
H Helin 《Medical biology》1986,64(4):167-176
Mononuclear phagocytes, a specialized cell lineage comprising bone-marrow precursors, blood monocytes and tissue macrophages, can interact with blood coagulation mechanisms with resulting thrombus formation or extravascular fibrin accumulation. Such procoagulant activity is usually activation dependent and requires interaction of the cells with immune or nonimmune stimuli. In the former case (e.g., alloantigens, soluble protein antigens) collaboration of mononuclear phagocytes with T lymphocytes is necessary and is mediated by cell-to-cell contact or lymphokines. Prototype of a direct acting stimulus is bacterial lipopolysaccharide. Mononuclear phagocyte procoagulant activity is expressed in the form of cell membrane-bound or released factors which display molecular heterogeneity. They include the initiator of the extrinsic clotting pathway, tissue factor, known clotting proteases such as factors V and VII, and novel proteolytic enzymes including prothrombinase and a factor X activator. Mononuclear phagocyte procoagulants are pathogenetically involved in generalized disorders with intravascular coagulation and thromboembolic phenomena. These disorders, exemplified by the Shwartzman reaction and possibly by paraneoplastic thromboembolism, are initiated by blood monocytes. Extravascular fibrin deposition can be initiated by tissue-infiltrating monocytes and macrophages in disease states such as acute renal allograft failure and solid tumours.  相似文献   

11.
Participation of central and peripheral++ cholinoreceptors in responses of blood coagulation system to intravenous vasopressin injection has been studied in experiments on white rats. Vasopressin was injected in combination with atropine and metacine Intensification of the procoagulant activity, that was observed 15 min after vasopressin injection (4 micrograms/kg), was practically retained during cholinergic blockade. The intensification of fibrinolytic activities as a result of an increase in the level of plasminogen activators in blood, is to a great extent blocked by atropine rather than by metacine. Consequently, to intensify the procoagulant activity without changes in fibrinolysis (for example hemophilia) it is necessary to use the vasopressin injection in combination with atropine.  相似文献   

12.
Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.  相似文献   

13.
Neutrophils and complement are key sentinels of innate immunity and mediators of acute inflammation. Recent studies have suggested that inflammatory processes modulate thrombogenic pathways. To date, the potential cross-talk between innate immunity and thrombosis and the precise molecular pathway by which complement and neutrophils trigger the coagulation process have remained elusive. In this study, we demonstrate that antiphospholipid Ab-induced complement activation and downstream signaling via C5a receptors in neutrophils leads to the induction of tissue factor (TF), a key initiating component of the blood coagulation cascade. TF expression by neutrophils was associated with an enhanced procoagulant activity, as verified by a modified prothrombin time assay inhibited by anti-TF mAb. Inhibition studies using the complement inhibitor compstatin revealed that complement activation is triggered by antiphospholipid syndrome (APS) IgG and leads to the induction of a TF-dependent coagulant activity. Blockade studies using a selective C5a receptor antagonist and stimulation of neutrophils with recombinant human C5a demonstrated that C5a, and its receptor C5aR, mediate the expression of TF in neutrophils and thereby significantly enhance the procoagulant activity of neutrophils exposed to APS serum. These results identify a novel cross-talk between the complement and coagulation cascades that can potentially be exploited therapeutically in the treatment of APS and other complement-associated thrombotic diseases.  相似文献   

14.
Factor XIIIa plays an important role in stabilization of formed fibrin clot during blood coagulation. Recent studies proved that factor XIIIa affects formation of coated platelets, which are highly procoagulant and characterized by a high level of alpha-granular proteins on their surface and expose surface phosphatidylserine after platelet activation. The ability of newly found cysteine proteinase inhibitors (CPIs) from plants to affect thiol group of the factor XIIIa active centre was recently discovered. Here, the effect of CPIs on the formation of coated platelets and activity of plasma components during blood coagulation process was investigated. It was found that CPIs dose-dependently decreased the fraction of coated platelets in the total platelet population during platelet activation and decreased endogenous thrombin potential (ETP) by 40% for thrombin generation in platelet-rich as well as in platelet-poor plasma. Such decrease of ETP could not be explained by the CPIs influence on factor XIIIa. Investigation of the effects of these inhibitors on factor Xa and thrombin activity has shown that CPIs dose-dependently inhibited their activity and might cause an ETP decrease. Thus, the obtained data indicated that CPIs affected both platelet and plasma components of blood coagulation system.  相似文献   

15.
Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin’s multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective.  相似文献   

16.
Infusion of tumor necrosis factor (TNF) into tumor-bearing mice led to intravascular clot formation with fibrin deposition in microvessels in the tumor bed in close association with the vessel wall, which could be prevented by active site-blocked factor IXa (IXai). This observation prompted us to examine the role of the intrinsic system in activation of the coagulation mechanism on TNF-stimulated human endothelial cell monolayers and endothelial-derived matrix during exposure to purified coagulation factors or flowing blood. Treatment of endothelial cells in intact monolayers with TNF induced expression of the procoagulant cofactor tissue factor (TF) in a dose-dependent manner, and after removal of the cells, TF was present in the matrix. TNF-treated endothelial cell monolayers exposed to blood anticoagulated with low molecular weight heparin induced activation of coagulation. Addition of IXai blocked the procoagulant response on TNF-treated endothelial cells, and consistent with this, the presence of factor IX/VIIIa enhanced endothelial TF/factor VII(a) factor X activation over a wide range of cytokine concentrations (0-600 pM). When TF-dependent factor X activation on endothelial cells was compared with preparations of subendothelium, the extracellular matrix was 10-20 times more effective. IXai blocked TF/factor VII(a) mediated activated coagulation on matrix, but only at lower concentration of TNF (less than 50 pM). Similarly, enhancement of factor Xa formation on matrix by factors IX/VIIIa was most evident at lower TNF concentrations. When anticoagulated whole blood flowing with a shear of 300 s-1 was exposed to matrices from TNF-treated endothelial cells, but not matrices from control cells, fibrinopeptide A (FPA) generation, fibrin deposition, and platelet aggregate formation were observed. FPA generation could be prevented by a blocking antibody to TF and by active site-blocked factor Xa (Xai) over a wide range of TNF concentrations (0-600 pM), whereas IXai only blocked FPA generation at lower TNF concentrations (less than 50 pM). Activation of coagulation on matrix from TNF-stimulated endothelial cells was dependent on the presence of platelets, indicating the important role of platelets in propagating the reactions leading to fibrin formation. These observations demonstrate the potential of cytokine-stimulated endothelium and their matrix to activate coagulation and suggest the importance of the intrinsic system in factor Xa formation on cellular surfaces.  相似文献   

17.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.  相似文献   

18.
Regulation of blood coagulation by the protein C system.   总被引:10,自引:0,他引:10  
F J Walker  P J Fay 《FASEB journal》1992,6(8):2561-2567
Protein C is a plasma, vitamin K-dependent zymogen of a serine protease that can inhibit blood coagulation. Protein C is regulated by a series of reactions known as the protein C pathway. The importance of this pathway is seen in the occurrence of thrombosis in individuals with deficiencies in elements of the pathway like protein C and protein S. Work on several steps in this pathway has revealed that mechanisms involved in activation of protein C and the expression of its anticoagulant activity have features that allow for the expression of the anticoagulant activity away from sites in which procoagulant reactions occur, but not systemically. Thrombin, the principal procoagulant enzyme at the site of an injury, is converted to an anticoagulant enzyme at distant sites through its interaction with the endothelial cell protein thrombomodulin. Structural and functional studies have revealed the importance of several domain structures in the modulation of thrombin activity. Structural features of both activated protein C and its substrates (coagulation factors V and VIII) are such that they require the localization of enzyme and substrate on the surface of phosphatidyl serine containing membranes for optimum activity.  相似文献   

19.
The mutual relationships between malignant tumours and mechanisms of blood coagulation are presented in a brief survey. In this connection, the mechanisms of a tumour cell entering the circulation through the vessel well and its leaving into the tissues are discussed, the theory of microtrauma being used for explaining these processes. Subsequently, the alterations to be found in the count and function of thrombocytes after contact with a malignant cell and the impact on this cell by blood platelets are represented. As a third factor the activation of blood coagulation which is exercised by substances with a procoagulatory effect produced by the malignant tissue and the frequently observed thrombosis in the course of neoplastic diseases are dealt with in connection with blood level changes of some coagulation factors. In a fourth section the significance of fibrinolysis, its activation and inhibition as well as the production of fibrinolytic activators by neoplasms are discussed.  相似文献   

20.
Formation of thrombin is triggered when membrane-localized tissue factor (TF) is exposed to blood. In closed models of this process, thrombin formation displays an initiation phase (low rates of thrombin production cause platelet activation and fibrinogen clotting), a propagation phase (>95% of thrombin production occurs), and a termination phase (prothrombin activation ceases and free thrombin is inactivated). A current controversy centers on whether the TF stimulus requires supplementation from a circulating pool of blood TF to sustain an adequate procoagulant response. We have evaluated the requirement for TF during the progress of the blood coagulation reaction and have extended these analyses to assess the requirement for TF during resupply ("flow replacement"). Elimination of TF activity at various times during the initiation phase indicated: a period of absolute dependence (<10 s); a transitional period in which the dependence on TF is partial and decreases as the reaction proceeds (10-240 s); and a period in which the progress of the reaction is TF independent (>240 s). Resupply of reactions late during the termination phase with fresh reactants, but no TF, yielded immediate bursts of thrombin formation similar in magnitude to the original propagation phases. Our data show that independence from the initial TF stimulus is achieved by the onset of the propagation phase and that the ensemble of coagulation products and intermediates that yield this TF independence maintain their prothrombin activating potential for considerable time. These observations support the hypothesis that the transient, localized expression of TF is sufficient to sustain a TF-independent procoagulant response as long as flow persists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号