首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The Feulgen acid hydrolysis patterns of chromatin of different biochemical composition and compactness were analyzed. It was found that the purine extraction rate during acid hydrolysis was affected by the addition of NaCl or 2-mercaptoethanol to the hydrolysis bath. The maximum DNA depolymerization rate was directly correlated to the depurination rate but the extraction rate of hydrolysed DNA was in addition dependent on the stability of the surrounding protein matrix. The results indicate that the diffusion of DNA fragments is partially obstructed in extremely stabilized chromatins (e.g. bull spermatozoa). It is assumed that the extraction pattern of DNA is mainly dependent on the size of the fragments which leave the chromatin by diffusion. It appears that basic proteins do not influence the depolymerization of DNA but there are indications that during certain experimental conditions the purine liberation is dependent upon the chromatin structure.  相似文献   

2.
Theoretical considerations on the expected kinetics of the course of the Feulgen-Schiff reaction show that the leveling off of the first part of the Feulgen hydrolysis curve can be explained by the gradual conversion of deoxyribonucleic acid (DNA) to apurinic acid (APA). In addition, depolymerization of DNA caused by the acid used for hydrolysis can account for the decline after a maximum is reached in this curve. With the aid of polyacrylamide model films containing DNA, a detailed study was made both of the process of purine liberation which results in the formation of APA and of the depolymerization processes which cause losses of stainable material. The liberation of purine bases was analyzed by ultraviolet absorbance measurements and by gel chromatography of the neutralized hydrolysing acid. APA concentration was monitored by following the loss of ultraviolet absorbance associated with the purine losses. The depolymerization process was followed by phosphorus determinations. The experimental results were found to be in accordance with the kinetics expected from the theoretical model.  相似文献   

3.
Synopsis Feulgen acid hydrolysis was performed on ascites tumour cells labelled with radioactive DNA-precursors. The development of fragments of apurinic acid and the extraction of purines were studied by monitoring the variations in the extraction rate during the hydrolysis when sodium chloride was either present or absent from the hydrolysis solution. The changes in the rate of extraction of purines and the alterations in the initial retardation of the apurinic acid extracting process followed approximately the same pattern. The extractability of apurinic acid fragments during hydrolysis in 0.3m HCl was found to be a maximum when the sodium chloride concentration was about 1m. Sudden exchange experiments, in which acid was substituted for sodium chloride after various times of hydrolysis, revealed a successive shortening of the extractable fragments during the low acid concentration hydrolysis. The results strengthen the view that, during hydrolysis, apurinic acid is lost from the cells through a reaction whose form is determined, first, by an initial retardation of the depolymerization, second, by the maximum length at which fragments developed through the depolymerization become soluble and are lost by diffusion, and last, at low acid concentrations, by a mechanism whose influence is equivalent to the presence of bonds between the fragments and an unextractable stable structure.  相似文献   

4.
The binding of Schiff dye molecules after acid hydrolysis (1 M HCl) for varying lengths of time was studied in ascites tumour cells. The amount of dye bound to the tumour cells closely followed the number of aldehyde groups, calculated from the extraction of radioactive nucleotides. This constant dye to aldehyde ratio did not change when the hydrolysis was performed at a lower acid concentration (0.3 M HCl). The conclusion drawn is that Feulgen dye measurements represent, in a constant way, the number of aldehydes on DNA at any given time during hydrolysis. The alteration of the hydrolysis pattern of chromatin fixed in formalin was found to be due to a slower extraction of DNA depolymerisation products, the purine liberation being unaffected. A similar explanation is offered for the extreme pattern obtained from hydrolysis of bull spermatozoa chromatin.  相似文献   

5.
Summary Hyperdiploid Ehrlioh's ascites tumour cells grown in male mice (strain NMRI) were labeled with radioactive nucleotides. The nucleic acids were extracted from fixed, air-dried smears by fractionated hydrolysis and their radioactivity measured by liquid scintillation. The experiments showed that the exposure of aldehydes through removal of purine bases and the elimination of these aldehydes through depolymerisation of DNA were the two main processes responsible for the Feulgen hydrolysis curve. They were shown to be independent and overlapping. The depurination can be described as a simple hydrolytic reaction, while the extraction of DNA depends on a number of different factors. This entails that, in the Feulgen acid hydrolysis procedure, the part of DNA measured is dependent upon the stability of the chromatin. It was found that it is possible accurately to determine the depolymerisation process and thereby roughly correct the measured amount of Feulgen DNA.  相似文献   

6.
A study of DNA depolymerisation during feulgen acid hydrolysis   总被引:1,自引:0,他引:1  
Summary The binding of Schiff dye molecules after acid hydrolysis (1 M HCl) for varying lengths of time was studied in ascites tumour cells. The amount of dye bound to the tumour cells closely followed the number of aldehyde groups, calculated from the extraction of radioactive nucleotides. This constant dye to aldehyde ratio did not change when the hydrolysis was performed at a lower acid concentration (0.3 M HCl). The conclusion drawn is that Feulgen dye measurements represent, in a constant way, the number of aldehydes on DNA at any given time during hydrolysis. The alteration of the hydrolysis pattern of chromatin fixed in formalin was found to be due to a slower extraction of DNA depolymerisation products, the purine liberation being unaffected. A similar explanation is offered for the extreme pattern obtained from hydrolysis of bull spermatozoa chromatin.  相似文献   

7.
Literature data concerning acid hydrolysis of DNA during the Feulgen procedure are reviewed, with emphasis being made on the dependence of Schiff-apurinic acid binding on the fixation technique, the temperature of hydrolysis and acid concentration, the rate of extraction of depolymerized DNA fragments, the nucleotide composition of DNA, the chromatin state, and on the composition of nucleoprotein. Some practical considerations for optimization of the Feulgen procedure for a precise quantitative determination of DNA amount are given.  相似文献   

8.
As models for different states of chromatin compactness, nuclei from chicken erythrocytes were isolated and either osmotically swollen or kept as condensed as possible. Both types of nuclei were then fixed and incorporated into polyacrylamide films. Hydrolysis with 5 N HCl and staining with Schiff's reagent of these model films were studied using several parameters. The phosphate content of the films was analyzed as a parameter for the depolymerization losses and the staining with Schiff's reagent as a parameter for the apurinic acid (APA) content. The loss of ultraviolet absorbance from the films and the accumulation of ultraviolet absorbing substances in the hydrolyzing acid were monitored as parameters for the progress of hydrolysis. Conversion of the generated aldehyde groups to APA-Schiff chromophore is shown to take place with the same stoichiometry for both types of nuclei as well as for DNA in model films. It is further shown that the nuclei- and DNA-films are suitable models for investigating the influence of chromatin compactness on the course of the Feulgen-Schiff reaction. For the most compact form of chromatin studied, a very high reduction in staining intensity of up to 40% could be demonstrated after certain normally applied hydrolysis times. This is due primarily to a decrease with a factor of 2.3 of the depurination rate constants of these models (from 0.030/min to 0.013/min). Therefore prolonged hydrolysis periods are required to obtain the same APA concentrations, but then depolymerization processes cause losses of nuclear material. The differences in depurination rates could be explained by a decrease in [H3O]+ in the neighborhood of the purine-sugar linkages, caused by the presence of fixed positive charges form the protein components of the chromatin. These findings may explain the cytophotometrically determined differences in chromophore yield of 10-20% found in the nuclei of cells with different states of compactness of their chromatin. The descending part of the Feulgen hydrolysis curve represents the depolymerization of APA and loss by diffusion of the reaction products. In the Appendix, cytophotometric data of cells have been analyzed to show that this part of the hydrolysis curve may be used to estimate the acid stability of chromatin complexes. The depurination and depolymerization rates found closely correspond with the data obtained from the model films.  相似文献   

9.
Hallmarks of the terminal stages of apoptosis are genomic DNA fragmentation and chromatin condensation. Here, we have studied the mechanism of condensation both in vitro and in vivo. We found that DNA fragmentation per se of isolated nuclei from non-apoptotic cells induced chromatin condensation that closely resembles the morphology seen in apoptotic cells, independent of ATP utilization, at physiological ionic strengths. Interestingly, chromatin condensation was accompanied by release of nuclear actin, and both condensation and actin release could be blocked by reversibly pretreating nuclei with Ca2+, Cu2+, diamide, or low pH, procedures shown to stabilize internal nuclear components. Moreover, specific inhibition of nuclear F-actin depolymerization or promotion of its formation also reduced chromatin condensation. Chromatin condensation could also be inhibited by exposing nuclei to reagents that bind to the DNA minor groove, disrupting native nucleosomal DNA wrapping. In addition, in cultured cells undergoing apoptosis, drugs that inhibit depolymerization of actin or bind to the minor groove also reduced chromatin condensation, but not DNA fragmentation. Therefore, the ability of chromatin fragments with intact nucleosomes to form large clumps of condensed chromatin during apoptosis requires the apparent disassembly of internal nuclear structures that may normally constrain chromosome subdomains in non-apoptotic cells.  相似文献   

10.
The wheat seedling endonucleases WEN1 and WEN2 dependent on Mg2+, Ca2+, and S-adenosyl-L-methionine (SAM) and sensitive to the substrate DNA methylation status have an expressed processing action. The enzymes hydrolyze DNA at a few subsequent stages: first, they split λ phage DNA specifically at CNG-sites (WEN1) with liberation of large fragments; second, they hydrolyze these fragments to 120–140 bp oligonucleotides that finally are hydrolyzed to very short fragments and mononucleotides. Initial stages of DNA hydrolysis may proceed in the absence of Mg2+, but subsequent hydrolysis stages are very strongly stimulated by Mg2+. It cannot be ruled out that modulation of enzymatic activity with Mg2+ and probably with DNA fragments formed is associated with reorganization of the structure of eukaryotic (wheat) endonucleases with respective changes in their catalytic properties and site specificity of action. Michaelis constant value for WEN1 endonuclease on hydrolysis of methylated λ phage DNA containing Cm5CWGG and Gm6ATC sites is four-fold lower compared with that observed on hydrolysis of unmethylated λ phage DNA. This may indicate that affinity of WEN1 enzyme to methylated DNA is higher than that to unmethylated DNA. In the presence of SAM, the Michaelis constant for WEN2 on the DNA hydrolysis stage characterized by formation of 120–140 bp fragments is decreased, but for WEN1 it is increased by 1.5–2.0-fold. This means that SAM inhibits WEN1 but stimulates WEN2. Thus, wheat endonucleases WEN1 and WEN2 differ significantly in affinities to substrate DNAs with different methylation status, in velocities of DNA hydrolysis, and time of production of DNA fragments of similar length. It seems that the investigated plant endonucleases can hydrolyze DNA in the nucleus as well to both large and very short fragments including mononucleotides, that is, in particular, essential for utilization of cell nucleic acid material during apoptosis.  相似文献   

11.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

12.
13.
In this study, the depolymerization of chitosan was carried out in an acetic acid aqueous solution and was followed by viscometry for molecular weight determination. It was found that the depolymerization rate increased with elevated temperatures and with high acid concentrations. Based on FTIR analysis, the chitosan was depolymerized randomly along the backbone; no other structural change was observed during the acid depolymerization process. Revealed in the TGA study, the degradation temperature and char yield of LMWCs (low molecular weight chitosan) were molecular weight dependent. The blood compatibility of LMWCs was also investigated: rouleaux formation was observed when erythrocyte contacted with LMWCs, which showed that LMWCs are able to interfere with the negatively charged cell membrane through its polycationic properties. Furthermore, as regards a kinetics investigation, the values of Mn (number-average molecular weight) were obtained from an experimentally determined relationship. The kinetics study showed that the complex salt, formed by amine on chitosan and acetic acid, acted as catalyst. Finally, the activation energy for the hydrolysis of the glycosidic linkage on chitosan was calculated to be 40 kJ/mol; the mechanism of acid depolymerization is proposed. In summary, LMWCs could be easily and numerously generated with acid depolymerization for further biological applications.  相似文献   

14.
1. After extraction of teichoic acid from cell walls of Bacillus licheniformis with dilute alkali, the insoluble residue contains the teichuronic acid and mucopeptide components and a small amount of residual phosphorus. 2. A complex of teichuronic acid and a part of the mucopeptide was isolated from the soluble fraction obtained by lysozyme treatment of alkali extracted walls. 3. Small-molecular-weight mucopeptide fragments, not containing teichuronic acid, are obtained from the soluble fraction in yields similar to those obtained after treatment of whole walls or acid-extracted walls with lysozyme. 4. The covalent linkages between teichuronic acid and mucopeptide are broken by treatment with dilute acid. The release of teichuronic acid chains is accompanied by the hydrolysis of N-acetylgalactosaminide linkages and the exposed N-acetylgalactosamine residues form chromogen under very mild conditions, indicating that they are substituted on C-3. 5. The initial rate of formation of reactive N-acetylgalactosamine residues during mild acid hydrolysis is parallel to the rate of extraction under the same conditions of teichuronic acid from alkali-treated insoluble walls, and to the rate of acid hydrolysis of glucose 1-phosphate. 6. The results suggest that the teichuronic acid chains are attached through reducing terminals of N-acetylgalactosamine residues to phosphate groups in the mucopeptide. 7. Muramic acid phosphate was isolated from the insoluble mucopeptide remaining after extraction of walls with dilute alkali followed by dilute acid.  相似文献   

15.
Summary Labelled nucleic acid were extracted from fixed, air-dried smears of Ehrlich's ascites tumour cells by fractionated hydrolysis and measured by liquid scintillation. It was found that the rates of RNA and DNA depolymerisation and of DNA depurination depended on temperature in the same way. The DNA extraction patterns retained their form when the temperature was varied. When the hydrolysis was performed in decreasing acid concentrations, however, there was a concomitant change in the form of the depolymerisation pattern. This change affects the amount of aldehyde groups available for dye-binding with the Feulgen method after the optimal hydrolysis time. The alteration in shape of the Feulgen curve is discussed and supposed to be due to an increased interaction between DNA and other macromolecules. It is suggested that this interaction may be useful in detecting differences in chromatin stability between cells which differ in gene activity.  相似文献   

16.
Effects of cycloheximide on chromatin biosynthesis.   总被引:10,自引:0,他引:10  
In the presence of sufficient cycloheximide, puromycin or NaCl to quantitatively inhibit protein synthesis in HeLa cells, thymidine incorporation continues at 20% of control rates for 60 to 90 minutes, after which incorporation gradually ceases. Both DNA and protein synthesis revert to control rates in about five minutes after removal of cycloheximide.DNA synthesis in the presence of cycloheximide appears to be a continuation of the replicative process by several criteria. The persistent DNA synthesis in the presence of cycloheximide is abolished by hydroxyurea, which does not inhibit repair synthesis, while ethidium bromide, an inhibitor of mitochondrial DNA synthesis, is without effect. Nuclear DNA is not nicked during incubation in cycloheximide. Low molecular weight Okazaki fragments (4 to 5 S) are both synthesized and processed to high molecular weight DNA in cells treated with cycloheximide. Replication forks, identified in alkaline CsCl gradients by incorporation of bromodeoxyuridine as a density marker just before the addition of cycloheximide, are selectively labeled with radioactive thymidine during DNA synthesis.In the presence of cycloheximide the maturation of DNA intermediates into high molecular weight DNA is defective. All size classes of DNA fragments, normally present during progression of low to high molecular weight DNA, are demonstrable in cells preincubated in cycloheximide for prolonged periods. However, 21 S fragments, intermediate in size between Okazaki pieces and mature, high molecular weight DNA, accumulate in cells treated with cycloheximide, demonstrating a defect in maturation of the 21 S intermediates into high molecular weight DNA. After removal of the cycloheximide, the 21 S DNA fragments are processed to high molecular weight DNA at a significantly impaired rate, requiring about three hours for completion of chain growth as compared to 40 to 60 minutes in controls. The slowed growth of DNA fragments synthesized in the presence of cycloheximide following drug removal is not due to persisting effects of cyeloheximide since DNA synthesis immediately following removal of the drug has chain growth rates similar to that of controls.Pools of chromatin proteins exist in HeLa cells, as demonstrated by a brief, labeled amino acid pulse followed by a chase with cycloheximide. The specific activity of chromatin proteins increases significantly during 60 minutes of cycloheximide inhibition. Histone f2a1 accumulates preferentially during this chase period, suggesting that a supply of this highly conserved histone might be requisite to continued replication.Comparison of chromatin synthesized during cycloheximide treatment with pulse-labeled control chromatin has provided insight into the mechanism of assembly of proteins and DNA into the nucleoprotein complex. The DNA of ch-chromatin2 is more susceptible to nuclease digestion than control chromatin, suggesting that it is deficient in protein content. Upon reversal of cycloheximide inhibition, the recovery of nuclease digestibility of ch-chromatin to control values takes two to three hours, a time similar to that required for conversion of the corresponding 21 S chDNA fragments to high molecular weight DNA. Briefly pulse-labeled (30 to 60 s) DNA in control chromatin also has an enhanced susceptibility to nuclease digestion of the same degree as found in ch-ehromatin. The time of recovery of increased nuclease susceptibility of newly made chromatin DNA (via protein addition) to control levels is about 10 to 15 minutes and corresponds to the time required for synthesis of replicon-sized units of DNA.In addition to being nuclease-sensitive, both cycloheximide and newly synthesized (30 to 60 s) chromatin have lighter buoyant densities in CsCl gradients than bulk chromatin. This property exists for only one to two minutes in controls and is probably due to structural properties distinct from those rendering nuclease sensitivity.Limit digests of chromatin by micrococcal nuclease yield a characteristic pattern of polynucleotides when resolved in polyacrylamide gels. The radioactivity profiles of limit digest polynucleotides from control and ch-chromatin are identical, indicating that pre-existing chromatin proteins remain in place on newly replicated DNA in the same fashion as in mature chromatin.  相似文献   

17.
The binding of [(3)H]3-methylcholanthrene to the DNA of hamster fibroblasts was studied by using chemical methods for DNA degradation. DNA depurinated by mild acid hydrolysis released approximately half of the radioactivity at the same rate as the purine bases, but the resulting apurinic acid still contained radioactive carcinogen.  相似文献   

18.
Nucleosome packing in chromatin as revealed by nuclease digestion.   总被引:3,自引:1,他引:2       下载免费PDF全文
Chromatin DNA of rat thymus nuclei was cleaved by Serratia marcescens endonculease. The fragments have been examined by polyacrylamide gel electrophoresis under denaturing conditions. The results obtained are interpreted to mean that the internucleosomal DNA is cleaved by the endonuclease into fragments which are multiples of 10 nucleotides. The 10 nucleotide periodicity in fragmentation of internucleosomal DNA is independent of the presence of histone H1 and is likely to be determined by the interaction of this DNA stretch with the histone core of nucleosomes. Such interaction implies a close association between the nucleosomes in the chromatin thread. Quasi-limit chromatin digest (50--55% of DNA hydrolysis) contains undegraded DNA fragments with length of up to 1000 nucleotides or more. A part of this resistant DNA consists of single-stranded fragments or contains single stranded regions. These data may be accounted for by a very compact nucleosome packing in the resistant chromatin in which one of the DNA stands is more accessible to the endonuclease action.  相似文献   

19.
20.
A comparison of the processes of chromatin digestion in brain and liver nuclei by Ca, Mg-dependent and staphylococcal endonucleases demonstrates a similarity of the subunit composition of chromatin from both tissues and reveals the same type of linked DNA regions. However, a formation of low molecular weight DNP fragments during hydrolysis and the DNA spectra of soluble and insoluble DNP fragments suggest that brain chromatin contains these fragments alongside with the regions, which are specific for this particular tissue, predominate in it and are resistant to staphylococcal and, particularly, to Ca, Mg-dependent endonucleases. This is paralleled with a non-histone protein enrichment of different brain chromatin fractions and an expansion of the electrophoretic monomer band towards the fragment with a greater molecular weight. It may be assumed that brain nucleosomes are characterized by a higher size heterogeneity of linked DNA, part of which are mostly covered by non-histone proteins, and/or are characterized by a greater set variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号