首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Alternative model for the internal structure of laminin   总被引:4,自引:0,他引:4  
S L Palm  J B McCarthy  L T Furcht 《Biochemistry》1985,24(26):7753-7760
A monoclonal antibody to laminin, LMN-1, was generated by immunizing rats with laminin from the EHS tumor and fusing the rat spleen cells with mouse NS-1 myeloma cells. Laminin fragments were generated by proteolytic digestion with thrombin, thermolysin, and chymotrypsin. Monoclonal antibody binding fragments were identified by immunoblotting. Fragments which bound monoclonal antibody LMN-1 included a 440-kilodalton (kDa) chymotrypsin fragment and thermolysin fragments of 440 and 110 kDa. These fragments could also be generated from within a 600-kDa thrombin fragment. Digestion of the 440-kDa chymotrypsin fragment with thermolysin generated the 110-kDa antibody binding fragment and a 330-kDa nonbinding fragment. Immunoblotting was performed on extracts of PYS-2 cells and EHS cells using polyclonal and monoclonal antibodies to laminin. Polyclonal antibodies stained the intact 850-kDa complex and the 200- and 400-kDa subunits, while monoclonal LMN-1 stained only the 400-kDa subunit and the complete molecule. Rotary shadowing of monoclonal LMN-1 bound to laminin molecules indicated that the binding site was within the long arm of laminin. Changes in the model of the internal organization of the laminin molecule are proposed, based on the binding of LMN-1 to the 400-kDa subunit and specific proteolytic fragments. The locations of the major thrombin and chymotrypsin fragments in the model are rotated 180 degrees relative to the previously described model [Ott, U., Odermatt, E., Engel, J., Furthmayr, H., & Timpl, R. (1982) Eur. J. Biochem. 123, 63-72] to include part of the 400-kDa subunit of laminin.  相似文献   

2.
Monoclonal antibodies were utilized to localize novel heparin-binding domains of laminin. A solid-phase radioligand binding assay was designed such that [3H] heparin bound to laminin in a time- and concentration-dependent manner. Tritiated heparin binding to laminin was saturable and specific as determined by competition with unlabeled heparin, dextran sulfate, and dermatan sulfate. By Scatchard analysis, two distinct dissociation constants were calculated (Kd = 50 and 130 nM), suggesting the presence of at least two binding sites for heparin on laminin. Tritiated heparin bound to thrombin-resistant (600 kDa) and chymotrypsin-resistant (440 kDa) laminin fragments, both known to lack the terminal globular domain of the long arm. Sodium dodecyl sulfate-polyacrylamide gels of chymotrypsin- and thermolysin-digested laminin chromatographed on a heparin-Sepharose column showed multiple proteolytic fragments binding to the column. Monoclonal antibodies generated against laminin were tested for their ability to inhibit [3H]heparin binding to laminin. Four monoclonal antibodies significantly inhibited the binding of [3H]heparin to laminin in the range of 15-21% inhibition. Laminin-monoclonal antibody interactions examined by electron microscopy showed that one antibody reacted at the terminal globular domain of the long arm, domain Hep-1, while epitopes for two of these monoclonal antibodies were located on the lateral arms of laminin, domain Hep-2, and the fourth monoclonal antibody bound below the cross-region of laminin, domain Hep-3. When two monoclonal antibodies recognizing distinctly different regions of laminin were added concomitantly, the inhibition of [3H]heparin binding to laminin increased almost 2-fold. These results suggest that at least two novel heparin-binding domains of laminin may be located in domains distinct from the terminal globular domain of the long arm.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2457-2465
Monoclonal antibodies were made against a truncated form of human laminin isolated from placenta. 12 antibodies were isolated and characterized. All antibodies stained basement membranes in placenta and immunoprecipitated laminin from media of cultured choriocarcinoma cells. Three antibodies, 3E5, 4C7, and 4E10, partially blocked the neurite-promoting activity of laminin. Addition of a second antibody, goat anti-mouse IgG, caused more complete blocking of the activity. Two of the blocking antibodies, 4C7 and 4E10, reacted with epitopes within the globular domain at the end of the long arm of laminin, and the third one, 3E5, reacted at the end of the rod-like portion of the long arm adjacent to the globular domain, as shown by electron microscopy after rotary shadowing. Five nonblocking antibodies used in the same test reacted with epitopes in other domains of the molecule. Blocking antibodies 3E5 and 4E10 could be used in immunoblotting and both antibodies reacted with the same polypeptides in pepsin fragments of human laminin, the predominant polypeptides being approximately 400 kD. When a crude extract of human amnion was used as a source of intact laminin, the 4E10 antibody detected a single polypeptide of approximately 400 kD. A nonblocking antibody, 2E8, which reacted at the center of the laminin cross, reacted predominantly with a 200-kD polypeptide in human laminin fragments and exclusively with a 200-kD polypeptide in amnion extract and in rat laminin. Our results with human laminin match the results by Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468, in which the neurite-promoting activity of mouse laminin resides at the end of the long arm, which is also the site for heparin binding. However, since the active fragments of human laminin did not bind to heparin, the neurite-promoting site should be different from the heparin-binding site. Our results further suggest that the neurite-promoting site may be contained in or close to the 400-kD component of laminin.  相似文献   

4.
Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
C N Rao  N A Kefalides 《Biochemistry》1990,29(29):6768-6777
A recently described procedure of reduction and carboxymethylation followed by heparin-Sepharose chromatography [Arumugham et al. (1988) Connect. Tissue Res. 18, 135-147] was used to characterize high-affinity heparin binding fragments of the laminin "A" chain. Two laminin fragments of Mr 53K and 43K selectively bound to the heparin-Sepharose column from the chymotrypsin digest of laminin, indicating that these fragments originate from the "A" chain. Without reduction and carboxymethylation but in the presence of 2.0 M urea, the heparin-Sepharose-bound material from the chymotrypsin laminin digest contains all the attachment-promoting activity for normal mouse mammary epithelial cells. The reduced 200-kDa intact three short arm fragment, fragments of Mr 70K-160K obtained either from laminin or from the reduced 200-kDa three short arm fragment, and the 53-kDa heparin binding fragment were all inactive in promoting the adhesion of mouse mammary epithelial cells. The mammary epithelial cell adhesion and spreading properties of laminin are associated with the high-affinity heparin binding 43-kDa fragment. The mammary epithelial cells attach to the 43-kDa fragment substrate and synthesize laminin, collagen type IV, and desmoplankins I and II as are the cells attached to laminin substrate and to the cells grown on tissue culture dishes. The biologically active 43-kDa fragment is generated from laminin, but not from the three short arm fragment. These results suggest that normal mouse mammary epithelial cells interact with laminin through a single site which is present in the 43-kDa heparin binding fragment located on the long arm of the "A" chain.  相似文献   

6.
We analyzed the reactivity of three different commercially available rat monoclonal antibodies raised against mouse laminin-alpha1beta1gamma1 (laminin-111), AL-1, AL-2, and AL-4. Using ELISA assays, Western blot analysis and immunostainings we present refined epitope maps for these three laminin monoclonals. AL-1 reacted, as predicted with laminin alpha1 chain. AL-4 has also been marketed as an alpha1 chain specific probe, but we show here that AL-4 detects mouse laminin beta1 chain, in the distal part of the coiled-coil region. AL-2 was predicted to react with all three chains near the cross-region, but seems to primarily react with laminin beta1 chain.  相似文献   

7.
Rat monoclonal antibodies were raised against fragment E3 of the mouse Engelbreth-Holm-Swarm (EHS) tumor laminin and selected according to their exclusive reaction with laminin A chain by immunoblotting and staining pattern in embryonic kidneys by immunofluorescence. Immunochemical studies of nine purified antibodies showed a comparable reaction with unfragmented laminin and fragment E3 but no cross-reaction with several other, unrelated laminin fragments including the major cell-binding fragment E8. Reduction or pepsin digestion of fragment E3 reduced or abolished antibody binding indicating that most of the epitopes involved are conformation dependent and do not include carbohydrates. They are, however, not identical as shown by different reactivities after proteolytic or chemical cleavage of E3. Four of the antibodies were highly active in inhibiting cell adhesion of the teratocarcinoma cell line F9 and the Schwannoma cell line RN22 on fragment E3 (IC50 approximately 1 microgram/ml), while the others were distinctly less active. No inhibition was observed for cell adhesion on unfragmented laminin, consistent with previous findings that this is largely mediated by binding of fragment E8 to alpha 6 beta 1 integrin. A distinct correlation was observed between cell adhesion inhibition and the inhibition of heparansulfate proteoglycan and heparin binding to fragment E3. Since heparin is not very efficient in inhibiting cell adhesion, it indicates that heparin- and cell-binding sites on fragment E3 are in close proximity but not identical. Two of the antibodies also showed partial inhibition of kidney tubule formation in organ culture of embryonic kidney mesenchyme while the other antibodies were inactive. It suggests some but probably minor involvement of the fragment E3 structure of laminin in this developmental process.  相似文献   

8.
Rat pheochromocytoma PC12 cells exposed to nerve growth factor differentiate as sympathetic neurons and extend neurites on laminin and to a much lesser extent on fibronectin. Analysis of laminin fragments indicated that neurite outgrowth occurs mainly on fragment P1, corresponding to the center of the cross, and only poorly on fragment E8, a long arm structure that is active with other neuronal cells. Integrin antibodies prevented adhesion and neurite sprouting of these cells on laminin, fragment P1, and fibronectin. By affinity chromatography we isolated an integrin-type receptor for laminin consisting of two subunits with molecular massess of 180 and 135 kDa. The latter is recognized by an antiserum to integrin beta 1 subunit. The bound laminin receptor could be displaced by EDTA, but not by Arg-Gly-Asp or Tyr-Ile-Gly-Ser-Arg peptides. Affinity chromatography on laminin fragments showed that the 180/135 kDa receptor binds to P1. The expression of the 180-kDa alpha subunit of the laminin receptor at the cell surface was increased 10-fold after NGF treatment. The effect of NGF is specific since the amount of a 150-kDa fibronectin-binding integrin alpha subunit remained unchanged. Moreover, the increased expression of the 180/135 kDa receptor at the cell surface corresponded to a selective increase in cell adhesion to laminin and to fragment P1. The 180/135-kDa complex is thus an integrin-type receptor for laminin whose expression and binding specificity correlates with the capacity of NGF-induced PC12 cells to extend neurites on laminin.  相似文献   

9.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

10.
Laminin derived from the Engelbreth-Holm-Swarm (EHS) tumor and a lamininlike molecule synthesized by RN22 Schwannoma cells both stimulate rapid neurite outgrowth, consistent with a common neurite-promoting site. However, antilaminin antisera can only inhibit the activity of the EHS laminin. The blocking antibodies in such sera are directed against the terminal heparin-binding domain of the laminin long arm (Edgar, D., R. Timpl, and H. Thoenen. 1984. EMBO [Eur. Mol. Biol. Organ.] J. 3: 1463-1468). These epitopes are demonstrated by immunoblotting to be part of the A chain and to be absent in RN22 laminin, showing (through metabolic labeling) that the cells synthesized little if any 440-kD A chain. This indicates that the antibody inhibition was probably due to steric hindrance, a common neurite-promoting site, apparently not being antigenic in native molecules. Antibodies raised against a 25-kD proteolytic fragment derived from the long arm of laminin were then used as probes to identify other potential neurite-promoting structures. Although these antibodies do not cross-react with native laminin, they recognized the B chains of denatured EHS and RN22 molecules on immunoblots. The antibodies also bound to the large proteolytic fragment, derived from the long arm of laminin that contains the neurite-promoting site, thus inhibiting its activity. Taken together, these results point to the localization of normally nonantigenic, defined, B chain sequences within or close to the neurite-promoting site of laminin.  相似文献   

11.
Tumor cell attachment to thrombospondin (TSP) in the extracellular matrix may be of critical importance in the processes of invasion and hematogenous dissemination. To determine the specific receptor systems that mediate the interaction of tumor cells with insoluble TSP, the attachment of HT1080 fibrosarcoma and C32 and G361 melanoma cells to TSP-coated discs was studied in the presence of heparin, Arg-Gly-Asp-Ser, or antibodies to glycoprotein (GP) IV (CD36, GPIIIb), a TSP receptor. HT1080 and C32 cell attachment to TSP was inhibited by the combination of heparin and a monoclonal (or polyclonal) antibody to GPIV but not by either alone. Heparin alone inhibited cell spreading. Neither control monoclonal antibodies nor the cell attachment peptide Arg-Gly-Asp-Ser inhibited tumor cell attachment to TSP, alone or in the presence of heparin. HT1080 cells attached equally as well to a 140-kDa proteolytic TSP fragment lacking the heparin-binding domain as to intact TSP. A monoclonal antibody to GPIV alone inhibited tumor cell attachment to the heparin-domainless 140-kDa TSP fragment. No attachment to the heparin-binding fragment was observed, but the addition of the heparin fragment to 140-kDa heparin-domainless TSP restored the heparin sensitivity of binding. G361 cells that lack GPIV attached well to TSP but were not inhibited by heparin or anti-GPIV alone or in combination. The combination of heparin and Arg-Gly-Asp-Ser inhibited G361 attachment to TSP. These studies suggest that tumor cells may utilize separate receptor systems in a cooperative manner to adhere to TSP. HT1080 fibrosarcoma and C32 melanoma cells utilize GPIV in concert with a heparin-modulated binding systems to attach and spread on TSP. G361 cells, which lack GPIV expression, attach and spread on TSP using an integrin system as well as a heparin-modulated system.  相似文献   

12.
Monoclonal antibodies against microtubule-associated protein 2 (MAP2) were prepared and their specificity was verified by visualization of the antigens using the antibody overlay technique and by radioimmunoassay. MAP2 was cleaved by alpha-chymotrypsin to generate a series of high-molecular-mass fragments ranging between 270 and 140 kDa. The precursor-product relationship of these fragments was suggested from the rate of their appearance and from the analysis of the tryptic peptide map of each fragment. A group of monoclonal antibodies was found to react predominantly with the intact 270-kDa MAP2 molecule and a fragment having a mass of 240 kDa and to some extent with a 215-kDa fragment. Another group of monoclonal antibodies reacted with an antigenic determinant which was located on the 270-kDa molecule as well as on fragments as small as 140 kDa. None of the two groups of monoclonal antibodies reacted with the microtubule-binding domain of MAP2. These results suggest that one group of antibodies reacts with sites located at or dependent upon a terminal 60-kDa domain(s) distal to the microtubule-binding site of MAP2. The second group of antibodies, which can still bind to smaller proteolytic products, appear to be associated with the central region of the MAP2 molecule. Indirect immunofluorescence experiments with the antibody preparations indicated that at least some of the antigenic determinants are exposed when MAP2 is associated with microtubules in the cell body and neurite outgrowths of differentiated rat brain neuroblastoma B104 cells.  相似文献   

13.
The interaction of cells with laminin and laminin fragments was studied in short-term cell attachment assays. Neurite-promoting chymotrypsin fragments of laminin were isolated using a monoclonal antibody which blocks neurite outgrowth on laminin. The fragments were shown, by electron microscopy after rotary shadowing and by immunological reactivity with different monoclonal antibodies, to contain only the distal end of the long arm. These fragments promoted the attachment and spreading of glioma, sarcoma, carcinoma, muscle, and endodermal cells to the same extent as intact laminin. The attachment was unaffected by peptides containing the RGD sequence. The morphology of the cells on the chymotrypsin fragments was indistinguishable from that on intact laminin but different from the morphology of the same cells on fibronectin. Light microscopy and scanning electron microscopy showed extensive process formation on laminin but not on fibronectin suggestive of increased cell motility in response to laminin. We conclude that the neurite-promoting domain of laminin contains a major site of interaction for non-neuronal cells and that this site induces a cellular response in certain non-neuronal cells that is unique to laminin.  相似文献   

14.
Limited proteolysis of human alpha 2-macroglobulin (alpha 2M) by a novel bacterial proteinase resulted in the isolation of a soluble 20-kDa domain. The isolated fragment contained the receptor recognition site, expressed on alpha 2M complexes, as it competed effectively with alpha 2M-trypsin for binding to the receptor on skin fibroblasts. The fragment also reacted with two monoclonal antibodies which define epitopes that are part of the receptor recognition site. Characterization of the 20-kDa domain showed it to contain an intact disulfide bridge, while its susceptibility to N-glycanase and reaction with concanavalin A indicated the presence of N-linked carbohydrate. The NH2-terminal sequence (Glu-Glu-Phe-Pro-Phe-Ala-Leu-Gly-Val-Glu-Thr-Leu-Pro-Glu-Thr-Cys-Asp-Glu -Pro) proved this fragment to constitute the COOH terminus of human alpha 2M. Proteolysis occurred at Lys1313-Glu which together with the observation that tosyllysine chloromethyl ketone was an effective inhibitor of the bacterial proteinase, would indicate the latter to hydrolyze preferentially peptide bonds carboxyl-terminal to lysine residues.  相似文献   

15.
Monoclonal antibodies (2-3E2, 6-3G11, and 7-3H6) against gap junction plaques purified from rat liver were prepared and characterized. Immunoblot analysis of liver gap junctions revealed that all three antibodies reacted with the 27-kDa protein, but not with the 22-kDa one. The 2-3E2 and 6-3G11 antibodies both reacted with the 27-kDa protein in gap junctions purified from livers of the rat, mouse, rabbit, and guinea pig; the 7-3H6 antibody, however, failed to react with the 27-kDa protein from guinea pig liver. The 7-3H6 antibody reacted strongly with the 24- to 26-kDa degradation products of the 27-kDa protein. Indirect immunofluorescence showed that the 6-3G11 and 7-3H6 antibodies both gave the same specific fluorescence labeling on rat liver cryosections, suggesting that these two antibodies recognized the cytoplasmic sites of the 27-kDa protein. Immunoblot analysis of protease-digested fragments from the 27-kDa protein revealed that the 7-3H6 antibody reacted with the 24- and 17-kDa fragments (including portions of the carboxyl-terminal domain of the 27-kDa protein) produced with endoproteinases Arg-C and Lys-C, respectively. Immunoblot analysis of CNBr fragments of the 27-kDa protein revealed that all three antibodies reacted with the 10-kDa fragment, which is thought to be the carboxyl-terminal domain of the 27-kDa protein. These results demonstrate that three monoclonal antibodies recognize different epitopes of the cytoplasmic sites (probably the carboxyl-terminal domain) of the 27-kDa liver gap junction protein.  相似文献   

16.
The purpose of this study was to identify the binding site(s) within laminin for the alpha 3 beta 1 integrin receptor. It has been previously shown, using proteolytic fragments and anti-laminin antibodies, that the region in laminin for alpha 3 beta 1 integrin binding is localized to the carboxy-terminal region at the end of the long arm (Gehlsen, K. R., E. Engvall, K. Dickerson, W. S. Argraves, and E. Ruoslahti. 1989. J. Biol. Chem. 264:19034-19038; Tomaselli, K. J., D. E. Hall, L. T. Reichardt, L. A. Flier, K. R. Gehlsen, D. C. Turner, and S. Carbonetto. 1990. Neuron. 5:651-662). Using synthetic peptides, we have identified an amino acid sequence within the carboxy-terminal region of the laminin A chain that is recognized by the alpha 3 beta 1 integrin. The amino acid sequence represented by the synthetic peptide GD-6 (KQNCLSSRASFRGCVRNLRLSR residues numbered 3011 to 3032) of the globular domain of the murine A chain supports cell attachment and inhibits cell adhesion to laminin-coated surfaces. By affinity chromatography, peptide GD-6-Sepharose specifically bound solubilized alpha 3 beta 1 from extracts of surface-iodinated cells in a cation-dependent manner, while it did not bind other integrins. In addition, exogenous peptide GD-6 specifically eluted bound alpha 3 beta 1 from laminin-Sepharose columns but did not elute the alpha 3 beta 1 integrin from a fibronectin-Sepharose column. Using integrin subunit-specific monoclonal antibodies, only those antibodies against the alpha 3 and beta 1 subunits inhibited cell adhesion to peptide GD-6-coated surfaces. Finally, a polyclonal antibody made against peptide GD-6 reacted specifically with both murine and human laminin and significantly inhibited cell adhesion to laminin-coated surfaces but not those coated with other matrix proteins. These results identify the laminin A chain amino acid sequence of peptide GD-6 as representing a binding site in laminin for the alpha 3 beta 1 integrin.  相似文献   

17.
Two monoclonal anti-fibronectin antibodies that inhibit fibronectin-mediated cell adhesion have been established and characterized. One antibody, FN12-8, inhibited attachment of rat kidney fibroblasts on the fibronectin-coated substrate in a concentration-dependent manner, attaining a maximal inhibition of greater than 85% at 850 micrograms/ml. Another antibody, FN30-8, caused about 70% inhibition at a concentration as low as 0.85 microgram/ml, although further increase of the antibody concentration did not significantly augment the inhibitory effect. Immunoblot analysis with defined proteolytic fragments revealed that both antibodies are directed to the cell-binding domain of fibronectin. The epitopes for these antibodies were further narrowed down using recombinant cell-binding fragments expressed in Escherichia coli. FN12-8 recognized the 11.5-kDa cell-binding fragment previously characterized by Pierschbacher et al. (1981, Cell 26, 259-267), suggesting that FN12-8 blocks the Arg-Gly-Asp (RGD) cell adhesion signal. FN30-8 could not bind this fragment but did recognize a longer cell-binding fragment containing additional greater than 111 amino acid residues upstream of the 11.5-kDa fragment. Since the RGD-dependent cell adhesion seems to require another signal located at a region 50-160 residues upstream of the 11.5-kDa fragment for full activity, FN30-8 may exert its inhibitory effect by blocking the latter signal.  相似文献   

18.
We recently found that polyclonal antibodies to laminin, a basement membrane-related glycoprotein, inhibited murine lung morphogenesis when added to organ cultures of mouse embryonic lung. Using a series of monoclonal anti-laminin antibodies with previously characterized subunit specificity (termed AL-1, AL-2, AL-3, AL-4, and AL-5), the deposition and functional involvement of different laminin domains in the developing lung were investigated. By immunohistochemistry the antibodies' reactivity was largely localized to the basement membrane, but was also present diffusely in the extracellular matrix throughout the mesenchyme. Organ cultures of lung explants from Day 12 embryos were cultured for 3 days in the presence of 50-100 micrograms/ml of each antibody or in the presence of the same concentration of immunoglobulins G and M, laminin-neutralized antibody, or medium alone. Cultures were monitored by phase-contrast microscopy, light microscopy, and immunofluorescence. Although all antibodies penetrated the tissues in culture, only two of them inhibited branching activity. These two antibodies were AL-1, which binds on or near the cross region of laminin, and AL-5, which binds to the lateral short arms at the globular end regions of the B chain of laminin. Inhibition of branching with these two antibodies was dose-dependent and statistically significant for the two concentrations used. AL-2, AL-3, AL-4, laminin-neutralized antibodies and control immunoglobulins did not alter lung morphogenesis. The two domains of laminin that promote lung branching morphogenesis have been reported by others to promote the attachment of a variety of cells and/or bind heparin. These domains of laminin may promote branching morphogenesis by facilitating cell attachment and, consequently, cell proliferation.  相似文献   

19.
Sulfatide-binding domain of the laminin A chain   总被引:2,自引:0,他引:2  
A sulfatide-binding site on the globular end region of the long arm of laminin has been identified. Following proteolytic digestion with thermolysin, an intact fragment of the laminin A chain carboxyl-terminal domain exhibiting sulfatide-binding activity was isolated using gel filtration and heparin affinity chromatography. This fragment is composed of two peptides that are covalently linked by at least one disulfide bond and encompass the carboxyl-terminal 394 amino acids of the A chain. The clusters of charged residues in the primary structure of these fragments are sufficient for heparin-binding activity but not sulfatide binding since reduction and alkylation of the fragments abolished sulfatide binding under conditions in which heparin binding was retained. Thus, sulfatide binding requires an intact three-dimensional structure. The iodinated fragment bound to A2058 melanoma and T47D breast carcinoma cells and could be displaced by the unlabeled fragment. Based on incorporation of [35S] sulfate, both cell lines synthesize sulfated glycolipids that bind to laminin. In agreement with previous data that indicate a synergistic interaction of the sulfatide-binding domain with other laminin-binding sites on melanoma cells during attachment, the isolated sulfatide-binding fragment significantly inhibited interaction of labeled intact laminin with melanoma and breast carcinoma cells in direct binding assays.  相似文献   

20.
R Dardik  J Lahav 《Biochemistry》1991,30(38):9378-9386
Endothelial and other cell types synthesize thrombospondin (TSP), secrete it into their culture medium, and incorporate it into their extracellular matrix. TSP is a large multifunctional protein capable of specific interactions with other matrix components, as well as with cell surfaces, and can modulate cell adhesion to the extracellular matrix. With the aim of understanding the mechanism by which TSP exerts its effect on cell adhesion, we studied the interaction of endothelial cell TSP (EC-TSP) with three different cell types: endothelial cells, granulosa cells, and myoblasts. We find that endothelial cells specifically bind radiolabeled EC-TSP with a Kd of 25 nM, and the number of binding sites is 2.6 X 10(6)/cell. Binding is not inhibitable by the cell-adhesion peptide GRGDS, indicating that the cell-binding site of EC-TSP is not in the RGD-containing domain. Localization of the cell-binding site was achieved by testing two chymotryptic fragments representing different regions of the TSP molecule, the 70-kDa core fragment and the 27-kDa N-terminal fragment, for their ability to bind to the cells. Cell-binding capacity was demonstrated by the 70-kDa fragment but not by the 27-kDa fragment. Binding of both intact [125I]EC-TSP and of the 125I-labeled 70-kDa fragment was inhibited by unlabeled TSP, heparin, fibronectin (FN), monoclonal anti-TSP antibody directed against the 70-kDa fragment (B7-3), and by full serum, but not by heparin-absorbed serum or the cell-adhesion peptide GRGDS. The 70-kDa fragment binds to endothelial cells with a Kd of 47 nM, and the number of binding sites is 5.0 x 10(6)/cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号