首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In atomic force microscopy, the tip experiences electrostatic, van der Waals, and hydration forces when imaging in electrolyte solution above a charged surface. To study the electrostatic interaction force vs distance, curves were recorded at different salt concentrations and pH values. This was done with tips bearing surface charges of different sign and magnitude (silicon nitride, Al2O3, glass, and diamond) on negatively charged surfaces (mica and glass). In addition to the van der Waals attraction, neutral and negatively charged tips experienced a repulsive force. This repulsive force depended on the salt concentration. It decayed exponentially with distance having a decay length similar to the Debye length. Typical forces were about 0.1 nN strong. With positively charged tips, purely attractive forces were observed. Comparing these results with calculations showed the electrostatic origin of this force.

In the presence of high concentrations (> 3 M) of divalent cations, where the electrostatic force can be completely ignored, another repulsive force was observed with silicon nitride tips on mica. This force decayed roughly exponentially with a decay length of 3 nm and was ~0.07-nN strong. This repulsion is attributed to the hydration force.

  相似文献   

2.
Native cellulose model films containing both amorphous and crystalline cellulose I regions were prepared by spin-coating aqueous cellulose nanofibril dispersions onto silica substrates. Nanofibrils from wood pulp with low and high charge density were used to prepare the model films. Because the low charged nanofibrils did not fully cover the silica substrates, an anchoring substance was selected to improve the coverage. The model surfaces were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of nanofibril charge density, electrolyte concentration, and pH on swelling and surface interactions of the model film was studied by quartz crystal microbalance with dissipation (QCM-D) and AFM force measurements. The results showed that the best coverage for the low charged fibrils was achieved by using 3-aminopropyltrimethoxysilane (APTS) as an anchoring substance and hence it was chosen as the anchor. The AFM and XPS measurements showed that the fibrils are covering the substrates. Charge density of the fibrils affected the morphology of the model surfaces. The low charged fibrils formed a network structure while the highly charged fibrils formed denser film structure. The average thickness of the films corresponded to a monolayer of fibrils, and the average rms roughness of the films was 4 and 2 nm for the low and high charged nanofibril films, respectively. The model surfaces were stable in QCM-D swelling experiments, and the behavior of the nanofibril surfaces at different electrolyte concentrations and pHs correlated with other studies and the theories of Donnan. The AFM force measurements with the model surfaces showed well reproducible results, and the swelling results correlated with the swelling observed by QCM-D. Both steric and electrostatic forces were observed and the influence of steric forces increased as the films were swelling due to changes in pH and electrolyte concentration. These films differ from previous model cellulose films due to their chemical composition (crystalline cellulose I and amorphous regions) and fibrillar structure and hence serve as excellent models for the pulp fiber surface.  相似文献   

3.
Medical implants are often colonized by bacteria which may cause severe infections. The initial step in the colonization, the adhesion of bacteria to the artificial solid surface, is governed mainly by long-range van der Waals and electrostatic interactions between the solid surface and the bacterial cell. While van der Waals forces are generally attractive, the usually negative charge of bacteria and solid surfaces leads to electrostatic repulsion. We report here on the adhesion of a clinical isolate, Stenotrophomonas maltophilia 70401, which is, at physiological pH, positively charged. S. maltophilia has an electrophoretic mobility of +0.3 x 10(-8) m2 V-1 s-1 at pH 7 and an overall surface isoelectric point at pH 11. The positive charge probably originates from proteins located in the outer membrane. For this bacterium, both long-range forces involved in adhesion are attractive. Consequently, adhesion of S. maltophilia to negatively charged surfaces such as glass and Teflon is much favored compared with the negatively charged bacterium Pseudomonas putida mt2. While adhesion of negatively charged bacteria is impeded in media of low ionic strength because of a thick negatively charged diffuse layer, adhesion of S. maltophilia was particularly favored in dilute medium. The adhesion efficiencies of S. maltophilia at various ionic strengths could be explained in terms of calculated long-range interaction energies between S. maltophilia and glass or Teflon.  相似文献   

4.
The interaction of cellulose layers with colloidal silica particles was investigated by direct force measurements with the atomic force microscope (AFM). Upon approach, repulsive forces were found between the negatively charged silica particles and the cellulose surface. The forces were interpreted quantitatively in terms of electrostatic interactions due to overlap of diffuse layers originating from negatively charged carboxylic groups on the cellulose surface. The diffuse layer charge density of cellulose was estimated to be 0.80 mC/m2 at pH 9.5 and 0.21 mC/m2 at pH 4. The forces upon retraction are characterized by molecular adhesion events, whereby individual cellulose chains desorb from the probe surface. The retraction profiles are dominated by well-defined force plateaus, which correspond to single-chain desorption forces of 35-42 pN. We surmise that adsorption of cellulose to probe surfaces is dominated by nonelectrostatic forces, probably originating from hydrogen bonding. Electrostatic contributions to desorption force could be detected only at high pH, where the silica surface is highly charged.  相似文献   

5.
A linear stability analysis is performed for a black lipid membrane. The hydrodynamic model consists of a viscous hydrocarbon film sandwiched between two aqueous phases. Attractive forces (van der Waals and electrical) and repulsive forces (steric) are expressed as body forces in the equations of fluid motion in the three phases. The steric repulsion due to overlap of the hydrocarbon chains of the lipids at small film thicknesses is described via an exponentially decaying interaction potential. The dispersion equation displays two modes of vibrations: the bending mode with the two Film surfaces transversely in phase, and the squeezing mode with the two surfaces 180 degrees out of phase. For symmetrical films, these two modes are uncoupled, and the squeezing mode (with thickness variations) is stabilized by the repulsive interactions. For nonsymmetrical films (different surface tensions, surface charges, etc.). these two modes are coupled and the asymmetry induces a shift of the marginal stability curve to shorter wavelengths.  相似文献   

6.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

7.
The non-polar component of the potential of mean force of dimerization of alanine dipeptide has been calculated in explicit solvent by free energy perturbation. We observe that the calculated PMF is inconsistent with a non-polar hydration free energy model based solely on the solute surface area. The non-linear behavior of the solute-solvent van der Waals energy is primarily responsible for the non-linear dependence of the potential of mean force with respect to the surface area. The calculated potential of mean force is reproduced by an implicit solvent model based on a solvent continuum model for the solute-solvent van der Waals interaction energy and the surface area for the work of forming the solute cavity.  相似文献   

8.
J Marra  J Israelachvili 《Biochemistry》1985,24(17):4608-4618
We report direct measurements of the full interbilayer force laws (force vs. distance) between bilayers of various phosphatidylcholines and phosphatidylethanolamine in aqueous solutions. Bilayers were first deposited on molecularly smooth (mica) surfaces and the interbilayer forces then measured at a resolution of 1 A. Three types of forces were identified: attractive van der Waals forces, repulsive electrostatic (double-layer) forces, and (at short range) repulsive steric hydration forces. Double-layer forces, which arise from ion binding, were insignificant in monovalent salt solutions, e.g., NaCl up to 1 M, but were already present in solutions containing millimolar levels of CaCl2 and MgCl2, giving rise to forces in excellent agreement with theory. Ca2+ binds more strongly than Mg2+, and both bind less to lecithin bilayers in the fluid state (T greater than Tc). The plane of charge coincides with the location of the negative phosphate groups, while the effective plane of origin of the van der Waals force is 4-5 A farther out. In water, the adhesion energies are in the range 0.10-0.15 erg/cm2 for lecithins and approximately 0.8 erg/cm2 for phosphatidylethanolamine. The adhesion energies vary on addition of salt due to changes in the repulsive double-layer and hydration forces rather than to a change in the attractive van der Waals force. The short-range repulsive forces which balance the van der Waals force at separations of 10-30 A are due to a combination of hydration and steric repulsions, the latter arising from thermal motions of head groups and thickness fluctuations of fluid bilayers (above Tc). It is also concluded that bilayer fusion is not simply related to the interbilayer force law.  相似文献   

9.
A critical role of the Family 7 cellobiohydrolase (Cel7A) carbohydrate binding domain (CBD) is to bind to a cellulose surface and increase the enzyme concentration on the surface. Several residues of Trichoderma reesei Cel7A CBD, including Y5, N29, Y31, Y32 and Q34, contribute to cellulose binding, as revealed by early experimental studies. To investigate the interactions between these important residues and cellulose, we applied a thermodynamic integration method to calculate the cellulose–Cel7A CBD binding free energy changes caused by Y5A, N29A, Y31A, Y32A and Q34A mutations. The experimental binding trend was successfully predicted, proving the effectiveness of the complex model. For the two polar residue mutants N29A and Q34A, the changes in the electrostatics are comparable to those of van der Waals, while for three Y to A mutants, the free energy differences mainly come from van der Waals interactions. However, in both cases, the electrostatics dominates the interactions between individual residues and cellulose. The side chains of these residues are rigidified after the complex is formed. The binding free energy changes for the two mutants Y5W and Y31W were also determined, and for these the van der Waals interaction was strengthened but the electrostatics was weakened.  相似文献   

10.
The interaction of progesterone, testosterone, androsterone, and etiocholanolone with insoluble lipid films (cholesterol and saturated hydrocarbons containing either alcohol, ester, acetamide, phosphate, amine, or carboxyl groups) was studied. In addition to surface pressure and surface potential measurements of the surface films, radioactive tracers were used to measure the concentration of adsorbed steroid in the lipid films. In general, steroids form mixed films with the insoluble lipid films. Compression of the insoluble lipid films to their most condensed state leads to complete ejection of adsorbed steroid from the surface in all cases except with the amine, for which a small amount of steroid is still retained in the surface. Interactions between the steroids and insoluble lipids are primarily due to van der Waals or dispersion forces; there were no significant contributions from dipole-dipole interactions (except possibly with the amine). Specific interactions between cholesterol and the soluble steroids were not observed. Evidence suggests that low steroid concentrations influence structure of lipid films by altering the hydration layer in the surface film. In contrast to a specific site of action, it is proposed that steroid hormones initiate structural changes in a variety of biological sites; this model of steroid action is consistent with the ubiquity of many steroid hormones.  相似文献   

11.
An analysis is made of the van der Waals dispersion attractive forces and electrostatic repulsive forces between the grana thylakoid membranes of chloroplasts. These forces are determined for negatively charged surfaces with a pKa value of 4.7 for a bulk pH of 7.0 with a range of mono- and divalent cation concentrations and intermembrane spacing in the range 10 to 80 Å. For equilibrium under dark conditions, it is concluded that either there is extensive electrostatic binding of divalent cations (Mg2+) to the negatively charged membrane groups (phospholipid, sulfolipid, and protein carboxyl), or a redistribution of these groups between stacked and unstacked regions must be invoked.  相似文献   

12.
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.  相似文献   

13.
Nonlinear thin film rupture has been analyzed by investigating the stability of tear films to finite amplitude disturbances. The dynamics of the liquid film is formulated using the Navier-Stokes equations, including a body force term due to van der Waals attractions. The governing equation was solved by the finite difference method as part of an initial value problem for spatial periodic boundary conditions. The rupture of the tear film covering the cornea and the formation of dry spots is an important phenomenon in various pathological states associated with a dry eye.  相似文献   

14.
We have devised a method of making a flat oil/water interface which remains flat on inversion. Cell adhesion to the interface can be observed microscopically. Glutaraldehyde-fixed human red blood cells adhere to the interface between physiological saline and hexadecane containing surface-active behenic acid at pH values below about 7-5. At high pH values, cells are prevented from adhering due to dissociation of the carboxyl groups of behenic acid oriented in the interface. The negative red cells are driven away electrostatically. Adherent and non-adherent cells remain on the aqueous side of the interface and do not appreciably deform it when adherent. Cells are electrostatically attracted to a similar interface containing positively charged octadecyltrimethylammonium ions. Cells also adhere to an interface containing octadecanol, which carries no charge. Underlying both electrostatic repulsion and attraction between red cells and oil/water interfaces is an attractive force which may be of electrodynamic (van der Waals) origin.  相似文献   

15.
When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to "dry out" the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem.  相似文献   

16.
Electrostatic interaction in atomic force microscopy   总被引:4,自引:3,他引:1       下载免费PDF全文
In atomic force microscopy, the stylus experiences an electrostatic force when imaging in aqueous medium above a charged surface. This force has been calculated numerically with continuum theory for a silicon nitrite or silicon oxide stylus. For comparison, the Van der Waals force was also calculated. In contrast to the Van der Waals attraction, the electrostatic force is repulsive. At a distance of 0.5 nm the electrostatic force is typically 10-12-10-10 N and thus comparable in strength to the Van der Waals force. The electrostatic force increases with increasing surface charge density and decreases roughly exponentially with distance. It can be reduced by imaging in high salt concentrations. Below surface potentials of ≈50 mV, a simple analytical approximation of the electrostatic force is described.  相似文献   

17.
Sun H  Hu N 《Biophysical chemistry》2004,110(3):411-308
A novel hemoglobin (Hb)-coated polystyrene (PS) latex bead film was deposited on pyrolytic graphite (PG) electrode surface. In the first step, positively charged Hb molecules in pH 5.0 buffers were adsorbed on the surface of negatively charged, 500 nm diameter PS latex beads bearing sulfate groups by electrostatic interaction. The aqueous dispersion of Hb-coated PS particles was then deposited on the surface of PG electrodes and, after evaporation of the solvent, Hb-PS films were formed. The Hb-PS film electrodes exhibited a pair of well-defined, quasi-reversible cyclic voltammetric (CV) peaks at about −0.36 V vs. SCE in pH 7.0 buffers, characteristic of Hb heme Fe(III)/Fe(II) redox couples. Positions of Soret absorption band of Hb-PS films suggest that Hb retains its near-native structure in the films in its dry form and in solution at medium pH. The Hb in PS films was also acted as a catalyst to catalyze electrochemical reduction of various substrates such as trichloroacetic acid (TCA), nitrite, oxygen and hydrogen peroxide.  相似文献   

18.
阳离子-π相互作用是一种在阳离子和芳香性体系之间形成的一种作用力。在蛋白质中,带正电荷的氨基酸(Lys、Arg)和芳香族氨基酸(Phe、Tyr、Trp)之间可以形成阳离子-π相互作用。对α/β类蛋白中两种典型折叠类型――单绕和双绕的研究表明:(1)单绕结构中阳离子-π相互作用的分布密度是双绕结构的2.3倍。(2)Arg-Phe组合偏好在双绕中出现,Arg-Tyr组合偏好在单绕中出现。(3)在单绕中除Lys-Phe组合外,其余5种组合的阳离子-π相互作用能量高于双绕的对应组合,其中以Arg-Trp组合的能量最高。(4)在单绕结构中,样本所含氨基酸残基数量和样本中阳离子-π的数量有明显的相关性,在双绕结构中没有发现类似的相关性。(5)在单绕和双绕结构当中,把阳离子-π相互作用能量分解为静电能和范德华力能揭示出静电能与范德华力能之比接近2∶1,静电作用在阳离子-π相互作用中起主要作用。  相似文献   

19.
Self-assembly of designed peptides is a promising area of biomaterials research and development. Here, polypeptide nanofilms have been prepared by electrostatic layer-by-layer self-assembly (LBL) of cysteine (Cys)-containing 32mers designed to be oppositely charged at neutral pH, and structural stability of the films has been probed by subjecting them to various extreme physical and chemical conditions. The results suggest that although electrostatic attraction plays a key role in strengthening polypeptide films, stability is inversely related to absolute net charge of the supramolecular complex. This behavior is similar to the typical behavior of small globular proteins. Film structure is very stable in organic solvent and, when dehydrated, at extreme temperatures. Such stability is in marked contrast to the behavior of proteins, which tend to denature under comparable conditions. Similar to proteins, peptide nanofilms cross-linked by disulfide (S-S) bonds are considerably stronger than films stabilized by electrostatic, van der Waals, or hydrophobic interactions alone. This effect is particularly evident at extremes of pH and at elevated temperature when the film is hydrated. These results, the great variety of possible peptide structures, the inherent biocompatibility of l-amino acids, and current applications of thin films in commercial products together suggest that polypeptide films are promising for the development of new or enhanced products in food technology, drug delivery and medical device coatings, and biomaterials.  相似文献   

20.
The interaction between para-crystalline cellulose and the cross-linking glycan xyloglucan (XG) plays a central role for the strength and extensibility of plant cell walls. The coating of XGs on cellulose surfaces is believed to be one of the most probable interaction patterns. In this work, the effects of explicit water and side chain variation on the adsorption of XGs on cellulose are investigated by means of atomistic molecular dynamics simulations. The adsorption properties are studied in detail for three XGs on cellulose Iβ 1–10 surface in aqueous environment, namely GXXXGXXXG, GXXLGXXXG, and GXXFGXXXG, which differ in the length and composition of one side chain. Our work shows that when water molecules are included in the theoretical model, the total interaction energies between the adsorbed XGs and cellulose are considerably smaller than in vacuo. Furthermore, in water environment the van der Waals interactions prevail over the electrostatic interactions in the adsorption. Variation in one side chain does not have significant influence on the interaction energy and the binding affinity, but does affect the equilibrium structural properties of the adsorbed XGs to facilitate the interaction between both the backbone and the side chain residues with the cellulose surface. Together, this analysis provides new insights into the nature of the XG–cellulose interaction, which helps to further refine current molecular models of the composite plant cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号