首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic Fate of Cysteine and Methionine in Rumen Digesta   总被引:2,自引:2,他引:0       下载免费PDF全文
Estimates were obtained of the extent to which cysteine and methionine were incorporated into the protein of the microbes of rumen digesta without prior degradation and resynthesis. By using the amino acids labeled with both (35)S and (14)C, it was observed that a large proportion of the (35)S appeared in the sulfide pool and of the (14)C appeared in volatile fatty acids. By isolating the appropriate amino acid, obtaining the (14)C to (35)S ratio, and comparing this with the ratio in the added amino acid, the degree of direct incorporation was calculated. For cysteine it was estimated that at most 1% and for methionine, at most 11% of the amino acid in the free pool was incorporated unchanged into microbial protein. As a consequence of these findings, it is considered that the method for measuring microbial protein synthesis in rumen digesta based upon incorporation of (35)S from the free sulfide pool is not seriously affected by direct utilization of sulfur amino acids arising from dietary sources.  相似文献   

2.
Nineteen mutants of Salmonella typhimurium responding to either cysteine or methionine (cym) have been identified amongst cysteine (cys) and methionine (met) auxotrophs. Their growth responses to known intermediates in the related pathways of cysteine and methionine biosynthesis and complementation patterns in abortive transduction tests divided the mutants into six groups. Results of conjugation, cotransduction and deletion mapping experiments substantiated these groups, each of which carried a lesion within known cys genes. Enzyme assays on cym mutants from five of the six groups confirmed their cys gene deficiencies. Growth response and enzyme assay data were not consistent with mutants being leaky cys mutants (spared by methionine). None of eight cym mutants tested were able to convert [35S]methionine into [35S]cysteine. Selenate specifically inhibits the early enzymes of cysteine synthesis. In cym mutants this inhibition was relieved by cysteine but not by methionine, indicating that cym mutants require active cys enzymes for growth on methionine. There was evidence that methionine stimulated in vivo activity of cys enzymes in a cym mutant. Resistance to inhibition by 1,2,4-triazole results in reduced levels of the O-acetyl serine sulphydrylase. In cym mutants triazole resistance gave unstable suppression of the cym phenotype. Cym mutants may result from mutation in regulatory regions common to each of the cys genes, with the precise role of methionine as yet unknown.  相似文献   

3.
The incorporation into the thiazole moiety of thiamine of several labeled compounds has been studied on short time incubations of washed-cells suspensions. No incorporation of radioactivity from [G-14C] methionine was found in a mutant auxotrophic for methionine. No radioactivity was incorporated from [U-14C] aspartate or from [U-14C] serine. The incorporation of 35S from sulphate was lowered by cysteine or glutathione but was unaffected by methionine or homocystine. Although the synthesis of thiazole is dependent on methionine, neither the sulphur atom nor the carbon chain of thiazole originate from methonine in E. coli. No carbon originates from cysteine which is the likely direct donor of sulphur.  相似文献   

4.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

5.
Incubation of [35S]methionine and [35S]cysteine with bovine albumin, globulin, catalase, hemoglobin, or human globulin resulted in incorporation of the 35S label into each of these proteins. Trichloroacetic acid (TCA) precipitation revealed that the percentage of label incorporated ranged from 1 to 15%. The 35S labeling was resistant to dissociation by reducing SDS-PAGE, prolonged dialysis against 4 M urea, heating, TCA precipitation, and dilution by gel filtration. The labeling effect was more efficient with [35S]cysteine than [35S]methionine. Incubation of 35S label with proteins differing in methionine and cysteine content revealed no requirement for sulfur-containing amino acids in the target protein. Protein carboxymethylation reduced but did not prevent 35S label incorporation. Amino acid analysis of labeled proteins revealed that the radioactive label was not consistently associated with an individual amino acid. Differences in the ability of various proteins to spontaneously label with these amino acids suggest caution in the interpretation of metabolic labeling experiments and the necessity for inclusion of additional controls. Alternatively, our experience indicates a potentially useful method for labeling proteins in the absence of cells.  相似文献   

6.
Methionine transsulfuration in plasma and liver, and plasma methionine and cysteine kinetics were investigated in vivo during the acute phase of sepsis in rats. Rats were infected with an intravenous injection of live Escherichia coli, and control pair-fed rats were injected with saline. Two days after injection, the rats were infused for 6 h with [(35)S]methionine and [(15)N]cysteine. Transsulfuration was measured from the transfer rate of (35)S from methionine to cysteine. Liver cystathionase activity was also measured. Infection significantly increased (P < 0.05) the contribution of transsulfuration to cysteine flux in both plasma and liver (by 80%) and the contribution of transsulfuration to plasma methionine flux (by 133%). Transsulfuration measured in plasma was significantly (P < 0.05) higher in infected rats than in pair-fed rats (0.68 and 0.25 micromol. h(-1). 100 g(-1), respectively). However, liver cystathionase specific activity was decreased by 17% by infection (P < 0.05). Infection increased methionine flux (16%, P < 0.05) less than cysteine flux (38%, P < 0.05). Therefore, the plasma cysteine flux was higher than that predicted from estimates of protein turnover based on methionine data, probably because of enhanced glutathione turnover. Taken together, these results suggest an increased cysteine requirement in infection.  相似文献   

7.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5beta-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

8.
Freshly isolated rat hepatocytes contained a high level (30–40 nmol/106 cells) of reduced glutathione (GSH) which decreased steadily upon incubation in an amino acid containing medium lacking cysteine and methionine. This decrease in GSH level was prevented, and turned into a slight increase, when either cysteine, N-acetylcysteine, or methionine was also present in the medium. The amino acid uptake into hepatocytes was more rapid with cysteine than with methionine. Cystine was not taken up, or taken up very slowly, by the cells and could not be used to prevent the decrease in GSH level which occurred in the absence of cysteine and methionine. The level of GSH in hepatocytes freshly isolated from rats pretreated with diethylmaleate was markedly decreased (to ~5 nmol/106 cells) but increased rapidly upon incubation of the cells in a medium containing amino acids including either cysteine, N-acetylcysteine, or methionine. Again, cysteine was taken up into the cells more rapidly than methionine. The rate of uptake of cysteine was moderately enhanced in hepatocytes with a lowered level of intracellular GSH as compared to cells with normal GSH concentration. Exclusion of glutamate and/or glycine from the medium did not markedly affect the rate of resynthesis of GSH by hepatocytes incubated in the presence of exogenously added cysteine or methionine. Incubation of hepatocytes with bromobenzene in an amino acid-containing medium lacking cysteine and methionine resulted in accelerated cell damage. Addition of either cysteine, N-acetylcysteine, or methionine to the medium caused a decrease in bromobenzene toxicity. The protective effect was dependent, however, on the time of addition of the amino acid to the incubate; e.g., the effect on bromobenzene toxicity was greatly reduced when either cysteine or methionine was added after 1 h of preincubation of the hepatocytes with bromobenzene as compared to addition at zero time. This decrease in protective effect in bromobenzene-exposed cells was related to a similar decrease in the rate of uptake of cysteine and methionine into hepatocytes preincubated with bromobenzene. The rate of uptake, and incorporation into cellular protein, of leucine was also markedly inhibited in hepatocytes preincubated with bromobenzene. In contrast, there was no measurable change in the rate of release of leucine from cellular protein as a result of incubation of hepatocytes with bromobenzene. It is concluded that the presence of cysteine, N-acetylcysteine, or methionine in the medium protects hepatocytes from bromobenzene toxicity by providing intracellular cysteine for GSH biosynthesis and suggested that an inhibitory effect on amino acid uptake may contribute to the cytotoxicity of bromobenzene in hepatocytes.  相似文献   

9.
A yeast strain highly resistant to propargylglycine (an inhibitor of cystathionine gamma-lyase) was isolated from air. It was partially characterized, but it has not been identified with any known yeast species. Its sulphur amino acid metabolism differed from that of other fungi by the lack of the reverse transsulphuration pathway from methionine to cysteine, as no activity of cystathionine beta-synthase or cystathionine gamma-lyase was found. The functional lack of this pathway was confirmed by growth tests and by experiments with [35S]methionine. In contrast to Saccharomyces cerevisiae neither homocysteine synthase nor the sulphate assimilation pathway were repressible by methionine in the new strain; on the contrary, a regulatory effect of cysteine was observed.  相似文献   

10.
《Insect Biochemistry》1988,18(6):599-605
When two clones of Myzus persicae were maintained on a defined diet with inorganic sulphate as sole sulphur source, their growth and survival were inferior to that on diets containing the sulphur amino acid, methionine. This discrepancy is due, at least in part, to the phagostimulatory properties of methionine, which stimulated aphid feeding rate by 50–150%. Myzus persicae incorporated radioactivity from dietary [35S]sulphate into protein and low molecular weight compounds, including cysteine and methionine. Two lines of evidence indicate that the mycetocyte-symbionts are responsible for the reductive assimilation of sulphate. (1) [35S]sulphate incorporation is abolished by treatment of the aphids with the antibiotic chlortetracycline, which disrupts the symbionts; and (2) [35S]sulphate is utilized by isolated embryos (which contain mycetocyte-symbionts but no gut flora) but not by isolated guts. Tracer studies suggest that 20% of dietary radiosulphur is translocated to the aphid tissues, and it is hypothesized that methionine may be the principal product released by the symbionts.  相似文献   

11.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

12.
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.  相似文献   

13.
Radiolabel from the methyl groups of serine and methyltetrahydrofolate was readily incorporated into methionine in adult Fasciola hepatica, and a substantial proportion of the label from [35S]methionine appeared in cysteine. The data suggest that methionine synthesis is via methyltetrahydrofolate-homocysteine methyltransferase and that there is cysteine synthesis from methionine. Cystathionine-β-synthase and γ-cystathionase activities were demonstrated in homogenates.  相似文献   

14.
15.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

16.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

17.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5β-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

18.
The Uptake and Metabolism of Cysteine by Giardia lamblia Trophozoites   总被引:1,自引:0,他引:1  
ABSTRACT. The cysteine, cystine, methionine and sulfate uptake and cysteine metabolism of Giardia lamblia was studied. Initial experiments indicated that bathocuproine sulphonate (20 μM) added to Keister's modified TYI-S-33 medium supported the growth of G. lamblia at low L-cysteine concentration. This allowed the use of high specific activity radiolabeled L-cysteine for further studies. The analyses of L-cysteine uptake by G. lamblia indicate the presence of at least two different transport systems. The total cysteine uptake was non saturable, with a capacity of 3.7 pmoles per 106 cells per min per μM of cysteine, and probably represent passive diffusion. However, cysteine transport was partially inhibited by L-methionine, D-cysteine and DL-homocysteine. indicating that another system specific for SH-containing amino acids is also present. Cysteine uptake was markedly decreased in medium without serum. In contrast to cysteine, the uptake of L-methionine and sulfate were carried out by saiurable systems with apparent Km, of 71 and 72 μM, respectively, but the Vmax of the uptake of sulfate was six orders of magnitude lower than the Vmax of methionine uptake. Cystine was not incorporated into trophozoites. [35S]-labeled L-cysteine and L-methionine, but not [35S]sulfate, were incorporated into Giardia proteins, indicating that the parasite lacks the capacity to synthesize cysteine or methionine from sulfate. Neither cystathionine γ lyase nor crystathionine γ synthase activities was detected in homogenates of Giardia lamblia , suggesting that the transsulfuration pathway is not active and there is no conversion of methionine to cysteine. Our data indicate that cysteine is essential for Giardia because the parasite: a) cannot take up cystine, and b) cannot synthesize cysteine de novo.  相似文献   

19.
We describe a procedure that allows cysteine and methionine content to be determined on microgram amounts of partially purified protein. The only requirements are that the protein can be obtained as a pure band after electrophoresis on a polyacrylamide gel and that some data on amino acid content be available. This method involves double labeling by growing bacterial cells with [3H]leucine and [35S]SO4 and determining the ratio of these radioisotopes incorporated into the ribonucleic acid polymerase subunits. The relative specific activities of [3H]leucine and [35S]cysteine and methionine are determined from the ratio of these isotopes incorporated into beta-galactosidase, the leucine, cysteine, and methionine contents of which are known. We have used this procedure to determine the sulfur content of the subunits of Escherichia coli ribonucleic acid polymerase. These new data are necessary to quantitate the rates of synthesis of these subunits by in vivo labeling with [35S]SO4.  相似文献   

20.
The carbon-2 of glycine can be incorporated into the methylgroup of dimethyl-ß-propiothetin in Ulva lactuca.This conversion is stimulated by unlabelled methionine. Highconcentrations of unlabelled glycine inhibit the incorporationof either L-methionine-35S or L-methionine-methyl-14C into DMP.The specific activity of methionine, isolated from alga incubatedwith glycine-2-14C and a high concentration of unlabelled methionine,is too low to permit it to be an intermediate in glycine-2-14Cincorporation into DMP. The incorportaion of radioctivity fromL-methionine-35S and L-methionine-methyl-3H into DMP indicatesthat while at least one methyl group is derived from methionine,other compounds can donate a portion of the second methyl group.It is concluded that glycine incorporation into the methyl groupof DMP is not via methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号