首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic oligosaccharide vaccines based on core STn (sialyl 2-6 GalNAc) carbohydrate epitopes are being evaluated by a number of biopharmaceutical firms as potential immunotherapeutics in the treatment of mucin-expressing adenocarcinomas. The STn carbohydrate epitopes exist as discontinuous clusters, O-linked to proximal serine and threonine residues within the mucin sequence. In an effort to probe the structure and dynamics of STn carbohydrate clusters as they may exist on the cancer-associated mucin, we have used NMR spectroscopy and MD simulations to study the effect of O-glycosylation of adjacent serine residues in a repeating (Ser)n sequence. Three model peptides/glyco-peptides were studied: a serine trimer containing no carbohydrate groups ((Ser)3 trimer); a serine trimer containing three Tn (GalNAc) carbohydrates -linked to the hydroxyls of adjacent serine sidechains ((Ser.Tn)3 trimer); and a serine trimer containing three STn carbohydrates -linked to the hydroxyls of adjacent serine sidechains ((Ser.STn)3 trimer). Our results demonstrate that clustering of carbohydrates shifts the conformational equilibrium of the underlying peptide backbone into a more extended and rigid state, an arrangement that could function to optimally present the clustered carbohydrate antigen to the immune system. Steric effects appear to drive these changes since an increase in the size of the attached carbohydrate (STn versus Tn) is accompanied by a stronger shift in the equilibrium toward the extended state. In addition, NMR evidence points to the formation of hydrogen bonds between the peptide backbone NH protons and the proximal GalNAc groups in the (Ser.Tn)3 and (Ser.STn)3 trimers. The putative peptide-sugar hydrogen bonds may also play a role in influencing the conformation of the underlying peptide backbone, as well as the orientation of the O-linked carbohydrate. The significance of these results will be discussed within the framework of developing clustered STn-based vaccines, capable of targeting the clustered STn epitopes on the cancer-associated mucin.  相似文献   

2.
Summary A peptide consisting of 20 amino acid residues, derived from a C-terminal fragment of neuropeptide Y (NPY) and showing high affinity to NPY receptors, was synthesised. Its sequence is PAADLARYRHYIN-LITRQRY-NH2, and the solution structure was calculated from NMR-derived distance and torsion angle restraints, obtained at 15°C in a solvent mixture of water and 30% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol, by using DIANA and restrained energy minimisation. The structure was found to consist of a well-defined -helix in the centre, with a few residues at the termini having less well defined conformations. The spinlattice and spin-spin relaxation rates of -carbons have been determined on 13C at natural abundance. From 1D experiments the global rotational correlation time was determined and from 2D experiments the dynamics of each individual residue was obtained. The results demonstrate that the C-H vectors in the -helix essentially follow the global motion. Towards the termini, contributions from local dynamics increase. This tendency is correlated to the increasing uncertainty of the structure towards the peptide ends. An effective molecular volume was calculated from the temperature dependence of the global rotational correlation time. This is well compatible with a monomeric peptide, solvated by water and 1,1,1,3,3,3-hexafluoro-2-propanol. The presence of peptide dimers was ruled out as being inconsistent with the relaxation data.Supplementary material available from the authors: Two data tables and 10 PDB coordinate files of the calculated NMR structures of P7. One data table contains all detected and integrated NOE intensities; the other connects each proton and pseudoatom to an atom number used in the NOE table. The table contents served as input data files for CALIBA.Currently on leave from the Institute of Chemical Physics and Biophysics, Tallinn, Estonia.  相似文献   

3.
Three new glycopeptides with O-glycosidic and one glycopeptide with N-glycosylaminic carbohydrate-peptide linkages have been isolated after degradation of blood group substances (BGS). Their structure have been determined as O-(α-GalNAc)-Ser(I), O-(GalNAc)-(Pro)-Ser(II), O-(GalNAc 1 → 3 GalNAc)-(Thr-Ala)-Ser(III), N-(β-GlcNAc)-Asn(IV). The isolation of glycopeptide I confirmed α-configuration of O-glycosidic carbohydrate-peptide bonds. The structure of glycopeptide III with two galactosamine residues is in accordance with the data on the presence of hexosamine core of BGS carbohydrate chains.  相似文献   

4.
The objective of this study was to explain the increased propensity for the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH (1), a vitronectin-selective inhibitor, to its cyclic imide counterpart cyclo-(1,7)-Gly-Arg-Gly-Asu-Ser-Pro-Asp-Gly-OH (2). Therefore, we present the conformational analysis of peptides 1 and 2 by NMR and molecular dynamic simulations (MD). Several different NMR experiments, including COSY, COSY-Relay, HOHAHA, NOESY, ROESY, DQF-COSY and HMQC, were used to: (a) identify each proton in the peptides; (b) determine the sequential assignments; (c) determine the cis-trans isomerization of X-Pro peptide bond; and (d) measure the NH-HCalpha coupling constants. NOE- or ROE-constraints were used in the MD simulations and energy minimizations to determine the preferred conformations of cyclic peptides 1 and 2. Both cyclic peptides 1 and 2 have a stable solution conformation; MD simulations suggest that cyclic peptide 1 has a distorted type I beta-turn at Arg2-Gly3-Asp4-Ser5 and cyclic peptide 2 has a pseudo-type I beta-turn at Ser5-Pro6-Asp7-Gly1. A shift in position of the type I beta-turn at Arg2-Gly3-Asp4-Ser5 in peptide 1 to Ser5-Pro6-Asp7-Gly1 in peptide 2 occurs upon formation of the cyclic imide at the Asp4 residue. Although the secondary structure of cyclic peptide 1 is not conducive to succinimide formation, the reaction proceeds via neighbouring group catalysis by the Ser5 side chain. This mechanism is also supported by the intramolecular hydrogen bond network between the hydroxyl side chain and the backbone nitrogen of Ser5. Based on these results, the stability of Asp-containing peptides cannot be predicted by conformational analysis alone; the influence of anchimeric assistance by surrounding residues must also be considered.  相似文献   

5.
Summary RC-RNase is a pyrimidine-guanine sequence-specific ribonuclease and a sialic-acid-binding lectin purified from Rana catesbeiana (bullfrog) oocytes. This 111-amino acid protein exhibits cytotoxicity toward several tumor cell lines. In this paper we report the assignments of proton NMR resonances and the identification of the secondary structure deduced from NOE constraints, chemical shift index, 3JNH and amide proton exchange rates. The protein was directly isolated from bullfrog oocytes; we were able to assign all but five of the amino acid backbone protons of the unlabeled protein by analyzing a large set of two-dimensional proton NMR spectra obtained at several temperatures and pH conditions. Our results indicate that the structure of RC-RNase is dominated by the presence of two triple-stranded antiparallel -sheets and three -helices, similar to those of the pyrimidine family ribonucleases. Two sets of resonances were observed for 11 amide protons and 8 -protons located in the loop-1 region, an 2 helix, and three -strands (1, 3 and 4), suggesting the presence of nonlocalized multiple conformations for RC-RNase.Abbreviations DQF-COSY double-quantum-filtered correlation spectroscopy - DTT dithiothreitol - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - PE-1 N-terminal pyroglutamate - RC-RNase ribonuclease from the oocyte of Rana catesbeiana - TOCSY total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP sodium 3-trimethylsilylpropionate-2,2,3,3-d 4  相似文献   

6.
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom–atom distance bounds, 3JNH and 3J coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom–atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0–1.5 ns while backbone 3JHN-coupling constants and 1H– 15N order parameters take slightly longer, 1.0–2.0 ns. As expected, side-chain 3J-coupling constants and 1H– 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.  相似文献   

7.
In a recent study C8γ (complement protein) with Cys40Ala substitution and a C8α derived peptide with Cys164Ala substitution were co-crystallized and their binding mode was revealed. Computer modeling and molecular dynamics simulations were performed in order to check the hypothesis that the residues Ala164 of C8α and Ala40 of C8γ occupied the right position if cysteine residues were in their place for disulfide bonding. Substitution of these two alanine residues with cysteine along with disulfide bond creation via molecular modeling and subsequent molecular dynamics simulation of the complex corroborated the hypothesis, which was also confirmed from recent crystallographic data. Average RMSD between backbone atoms of the indel peptide during the MD trajectory in comparison with the corresponding sequence of crystal structure of the C8α/γ complex was found only 0.085 nm. Figure Modeling the C*y/α comlexation. Ribbon representation of the C8y complexed with C8α indel peptide initial (green/cyan) X-ray structure and the final MD conformation (magenta/orange) after imposing the disulfide link. Average RMSD between backbone atoms of the indel peptide during MD trajectory in comparison with the corresponding sequence of crystal structure of the C8α/y complex was found only 0.085nm. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary The solution structure of the SH3 domain of human p56 Lck tyrosine kinase (Lck-SH3) has been determined by multidimensional heteronuclear NMR spectroscopy. The structure was calculated from a total of 935 experimental restraints comprising 785 distance restraints derived from 1017 assigned NOE cross peaks and 150 dihedral angle restraints derived from 160 vicinal coupling constants. A novel combination of the constant-time 1H–13C NMR correlation experiment recorded with various delays of the constant-time refocusing delays and a fractionally 13C-labelled sample was exploited for the stereo-specific assignment of prochiral methyl groups. Additionally, 28 restraints of 14 identified hydrogen bonds were included. A family of 25 conformers was selected to characterize the solution structure. The average root-mean-square deviations of the backbone atoms (N, C, C, O) among the 25 conformers is 0.42 Å for residues 7 to 63. The N- and C-terminal residues, 1 to 6 and 64 to 81, are disordered, while the well-converged residues 7 to 63 correspond to the conserved sequences of other SH3 domains. The topology of the SH3 structure comprises five anti-parallel -strands arranged to form two perpendicular -sheets, which are concave and twisted in the middle part. The overall secondary structure and the backbone conformation of the core -strands are almost identical to the X-ray structure of the fragment containing the SH2-SH3 domains of p56 Lck [Eck et al. (1994) Nature, 368, 764–769]. The X-ray structure of the SH3 domain in the tandem SH2-SH3 fragment is spatially included within the ensemble of the 25 NMR conformers, except for the segment of residues 14 to 18, which makes intermolecular contacts with an adjacent SH2 molecule and the phosphopeptide ligand in the crystal lattice. Local structural differences from other known SH3 domains are also observed, the most prominent of which is the absence in Lck-SH3 of the two additional short -strands in the regions Ser15 to Glu17 and Gly25 to Glu27 flanking the so-called RT-Src loop. This loop (residues Glu17 to Leu24), together with the n-Src loop (residues Gln37 to Ser46) confines the ligand interaction site which is formed by a shallow patch of hydrophobic amino acids (His14, Tyr16, Trp41, Phe54 and Phe59). Both loops are flexible and belong to the most mobile regions of the protein, which is assessed by the heteronuclear 15N,1H-NOE values characterizing the degree of internal backbone motions. The aromatic residues of the ligand binding site are arranged such that they form three pockets for interactions with the polyproline ligand.Abbreviations CT constant time - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - SH2 Src homology domain 2 - SH3 Src homology domain 3  相似文献   

9.
The conformation of the C-terminus of the -subunit of transducin, the G-protein of vision, has been determined by transfer NOE when bound to activated (MII) rhodopsin. One hundred three new NOE constraints are apparent when light is shown on a mixture of rhodopsin bilayers and the undecapeptide. Analogs of the -peptide with covalent constraints were designed restricting the bound conformation; they stabilize MII thus supporting the deduced structure. The NMR structure of a complex of the intracellular loops of rhodopsin facilitates docking of the -peptide and also shows proximity of residues known by mutational analysis to interact to generate the activated rhodopsin-transducin interface. This constrains the location of transmembrane helices in the structure of activated rhodopsin. Methods for the prediction of affinity have been used to estimate the relative binding constants of peptide analogs with the loop complex and show strong correlation with experimental data. Various models of the rhodopsin-transmembrane helical segments have been computationally fused with distance geometry to determine the overall model which best fits the experimental data on the rhodopsin-transducin interface.  相似文献   

10.
The three-dimensional structure of a synthetic fragment of human apolipoprotein CII (apo-CII) in 35%, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) has been determined on the basis of distance and intensity constraints derived from two-dimensional proton nuclear magnetic resonance measurements. The NOE crosspeak build-up rates were converted to distance constraints which were used in the distance geometry program DIANA. A set of one hundred structures were generated and of these ten structures were used in molecular dynamics simulations using the program XPLOR. This program enabled a direct minimization between the difference of the two-dimensional NOE intensities and those calculated from the full relaxation matrix. In this way spin diffusion is fully taken into account, which can be seen from the considerable improvement of the R-factor after the relaxation matrix refinement. These calculations show that this fragment, which corresponds to the carboxy terminal 30 amino acids of intact apo-CII and which retains its ability to activate lipoprotein lipase, is essentially flexible, but has three defined secondary structural elements. The most significant one is an -helix between residues 67 and 74. The following three residues adopt a turn-like structure. Another turn of -helix is seen between residues 56 and 59. The effect of the solvent system on the secondary structure was studied by circular dichroism spectroscopy. The results show that the mixed aqueous 35% HFP solvent induces secondary structure of a very similar nature to the one induced by sodium dodecyl sulphate.Abbreviations Apo-CII Apolipoprotein CII - CD Circular Dichroism - DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPG 1,2-dioleoyl-sn-glycero-3-phosphoglycerol - HAc Acetic Acid - HFP 1,1,1,3,3,3-hexafluoro-2-propanol - ISPA Isolated Spin Pair Approximation - NMR Nuclear Magnetic Resonance - NOE Nuclear Overhauser Enhancement - NOESY Nuclear Overhauser Enhancement Spectroscopy - RMSD Root Mean Square Deviation - SDS Sodium Dodecyl Sulfate  相似文献   

11.
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (Nalpha-Fmoc-Ser-[Ac4-beta-D-Gal-(1,3)-Ac2-alpha-D-GalN3+ ++]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D 1H NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, CalphaH chemical shift perturbations, 3JNH:CalphaH couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.  相似文献   

12.
A method is proposed to determine the conformational equilibrium of flexible polypeptides in solution, using the data provided by NMR spectroscopy and theoretical conformational calculations. The algorithm consists of the following three steps: (i) search of the conformational space in order to find conformations with reasonably low energy; (ii) simulation of the NOE spectrum and vicinal coupling constants for each of the low energy conformations; and (iii) determining the statistical weights of the conformations, by means of the maximum-entropy method, in order to obtain the best fit of the averaged NOE intensities and coupling constants to the experimental quantities. The method has been applied to two cyclic enkephalin analogs: DNS1-c-[d-A2bu2,Trp4,Leu5]enkephalin (ENKL) and DNS1-c-[d-A2bu2,Trp4,d-Leu5]enkephalin (ENKD). NMR measurements were carried out in deuterated dimethyl sulfoxide. Two techniques were used in conformational search: the electrostatically driven Monte Carlo method (EDMC), which results in extensive search of the conformational space, but gives only energy minima, and the molecular dynamics method (MD), which results in a more accurate, but also more confined search. In the case of EDMC calculations, conformational energy was evaluated using the ECEPP/3 force field augmented with the SRFOPT solvation-shell model, while in the case of MD the AMBER force field was used with explicit solvent molecules. Both searches and subsequent fitting of conformational weights to NMR data resulted in similar conformations of the cyclic part of the peptides studied. For both ENKL and ENKD a common feature of the low-energy solution conformations is the presence of a type II or type IV -turn at residues 3 and 4; the ECEPP/3 force field also gives a remarkable content of type III -turn. These -turns are tighter in the case of ENKL, which is reflected in different distributions of the d-A2bu(NH)...d-A2bu(CO) and d-A2bu(NH)...Gly3(CO) hydrogen-bonding distances, indicating that the d-A2bu(NH) amide proton is more shielded from the solvent than in the case of ENKD. This finding conforms with the results of temperature coefficient data of the d-A2bu(NH) proton. It has also been found that direct (MD) or Boltzmann (EDMC) averages of the observables do not exactly conform with the measured values, even when explicit solvent molecules are included. This suggests that improving force-field parameters might be necessary in order to obtain reliable conformational ensembles in computer simulations, without the aid of experimental data.  相似文献   

13.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

14.
Summary A method is proposed to generate initial structures in cases where the distance geometry method may fail, such as when the set of1H NMR NOE-based distance constraints is small in relation to the size of the protein. The method introduces an initial correlation between the and backbone angles (based on empirical observations) which is relaxed in later stages of the calculation. The obtained initial structures are refined by well-established methods of energy minimization and restrained molecular dynamics. The method is applied to determine the solution structure of Ribonuclease A (124 residues) from a NOE basis consisting of 467 NOE cross-correlations (97 intra-residue, 206 sequential, 23 medium-range and 141 long-range) obtained at 360 MHz. The global shape and backbone overall fold of the eight final refined structures are close to those shown by the crystal structure. A meaningful difference in the positioning of the catalytically important His119 side chain in the solution and crystal structures has been detected.  相似文献   

15.
Summary The effects of selective deuteration on calculated NOESY intensities have been analyzed for the structure of theE. coli trp aporepressor, a 25 kDa protein. It is shown that selectively deuteratedtrp aporepressor proteins display larger calculated NOESY intensities than those for the same interproton distances in the natural abundance protein. The relatively larger magnetization transfer is demonstrated by a comparison of the NOE build-up curves for specific proton pairs, and for the calculated NOE intensities of short-range NOEs to backbone amide protons. This increase in intensity is especially pronounced for the NH1–NH1+1 cross peaks in the -helical regions, and particularly for amide protons of two sequential deuterated residues. The effect is shown to be further intensified for longer mixing times. It is also shown that in all cases, each amide proton exhibits stronger NOEs to its own side chain, with an enhanced effect for deuterated derivatives. This theoretical analysis demonstrates that an evaluation of the relative NOE intensities for different selectively deuterated analogs may be an important tool in assigning NMR spectra of large proteins. These results also serve as a guide for the interpretation of NOEs in terms of distances for structure calculations based on data using selectively deuterated proteins.  相似文献   

16.
The NMR structure of the peptide deformylase (PDF) (1–150) from Escherichia coli, which is an essential enzyme that removes the formyl group from nascent polypeptides and represents a potential target for drug discovery, was determined using 15N/13C doubly labeled protein. Nearly completely automated assignment routines were employed to assign three-dimensional triple resonance, 15N-resolved and 13C-resolved NOESY spectra using the program GARANT. This assignment strategy, demonstrated on a 17 kDa protein, is a significant advance in the automation of NMR data assignment and structure determination that will accelerate future work. A total of 2302 conformational constraints were collected as input for the distance geometry program DYANA. After restrained energy minimization with the program X-PLOR the 20 best conformers characterize a high quality structure with an average of 0.43 Å for the root-mean-square deviation calculated from the backbone atoms N, C and C, and 0.81 Å for all heavy atoms of the individual conformers relative to the mean coordinates for residues 1 to 150. The globular fold of PDF contains two -helices comprising residues 25–40, 125–138, six -strands 57–60, 70–77, 85–88, 98–101, 105–111, 117–123 and one 310 helix comprising residues 49–51. The C-terminal helix contains the HEXXH motif positioning a zinc ligand in a similar fashion to other metalloproteases, with the third ligand being cysteine and the fourth presumably a water. The three-dimensional structure of PDF affords insight into the substrate recognition and specificity for N-formylated over N-acetylated substrates and is compared to other PDF structures.  相似文献   

17.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CH and Ser CH, Leu3 CH and Leu3 NH, and Leu4 CH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

18.
The structure and dynamics of the gastrointestinal peptide hormone motilin, consisting of 22 amino acid residues, have been studied in the presence of isotropic q=0.5 phospholipid bicelles. The NMR solution structure of the peptide in acidic bicelle solution was determined from 203 NOE-derived distance constraints and six backbone torsion angle constraints. Dynamic properties for the 13C-1H vector in Leu10 were determined for motilin specifically labeled with 13C at this position by analysis of multiple-field relaxation data. The structure reveals an ordered -helical conformation between Glu9 and Lys20. The N-terminus is also well structured with a turn resembling that of a classical -turn. The 13C dynamics clearly show that motilin tumbles slowly in solution, with a correlation time characteristic of a large object. It was also found that motilin has a large degree of local flexibility as compared with what has previously been reported in SDS micelles. The results show that motilin interacts with the bicelle, displaying motional properties of a peptide bound to a membrane. In comparison, motilin in neutral bicelles seems less structured and more flexible. This study shows that the small isotropic bicelles are well suited for use as membrane-mimetic for structural as well as dynamical investigations of membrane-bound peptides by high-resolution NMR.  相似文献   

19.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

20.
Six tetrasaccharide fractions were isolated from shark cartilage chondroitin sulfate D by gel filtration chromatography followed by HPLC on an amine-bound silica column after exhaustive digestion with testicular hyaluronidase. Their structures were determined unambiguously by one- and two-dimensional 500 MHz1H NMR spectroscopy in conjunction with HPLC analysis of chondroitinase AC-II digests of the tetrasaccharides. One fraction was found to contain two tetrasaccharide components. All the seven tetrasaccharides shared the common core structure GlcA1-3GalNAc1-4GlcA1-3GalNAc with various sulfation profiles. Four were disulfated comprising of two monosulfated disaccharide units GlcA1-3GalNAc(4-sulfate) and/or GlcA1-3GalNAc(6-sulfate), whereas the other three were hitherto unreported trisulfated tetrasaccharides containing a disulfated disaccharide unit GlcA(2-sulfate)1-3GalNAc(6-sulfate) and a monosulfated disaccharide unit GlcA1-3GalNAc(4-or 6-sulfate). These sulfated tetrasaccharides were demonstrated to serve as appropriate acceptor substrates for serum -N-acetylgalactosaminyltransferase, indicating their usefulness as authentic oligosaccharide substrates or probes for the glycobiology of sulfated glycosaminoglycans.Abbreviations NFU National formulary unit - COSY correlation spectroscopy - HOHAHA homonuclear Hartmann-Hahn - 1D or 2D one- or two-dimensional - IdoA l-iduronic acid - GlcA d-gluco-4-enepyranosyluronic acid - Di-0S GlcA1-3GalNAc - Di-4S GlcA1-3GalNAc(4-sulfate) - Di-4S GlcA1-3GalNAc(4-sulfate) - Di-6S GlcA1-3GalNAc(6-sulfate) - Di-6S GlcA1-3GalNAc(6-sulfate) - Di-diS d GlcA(2-sulfate)1-3GalNAc(6-sulfate) - Di-diSE GlcA1-3GalNAc(4, 6-disulfate) - U G, U, 2S, 4S, and 6S represent GlcA, GalNAc, GlcA, 2-O-sulfate, 4-O-sulfate, and 6-O-sulfate, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号