首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quick freezing of rat morulae and blastocysts was attempted after they were dehydrated at room temperature. Combined solutions of 2.8 M glycerol and 0.125, 0.25, 0.50 and 1.0 M sucrose in phosphate buffered saline + 20% steer serum were compared. Survival rates (expanding blastocysts 15 h after thawing) were 42.1, 79.4, 87.5 and 16.7%, respectively (P<0.01). Freezing procedures consisted of either a direct plunge into liquid nitrogen (48.8%), holding for 5 min in the neck of a liquid nitrogen container or holding the samples for 60 min at -30 degrees C before insertion into liquid nitrogen. The direct plunge method resulted in a lower survival rate than either the 5- or the 60-min treatments (48.8% vs 76.9% and 77.6%, respectively). After thawing, dilution at room temperature in sucrose solutions of 0.25, 0.50 and 1.0 M gave survival rates of 80.0, 90.6 and 69.4%, respectively (NS). If diluted directly in PBS + 20% steer serum, 86.8% of embryos survived at +37 degrees C vs 0% at 0 degrees C (P<0.01).  相似文献   

2.
The ability of embryos to successfully survive cryopreservation is dependent on both morphological and developmental characteristics. Domestic cat oocytes matured in vitro exhibit alterations in nuclear and cytoplasmic maturation that may affect developmental competence, particularly after cryopreservation. In Experiment 1, we evaluated the developmental competence of in vitro produced (IVM/IVF) cat embryos after cryopreservation on Days 2, 4 or 5 of IVC. In Experiment 2, in vivo viability was examined by transfer of cryopreserved embryos into recipient queens. Oocytes recovered from minced ovaries were cultured in TCM-199 with hCG/eCG and EGF at 38 degrees C in 5% O(2), 5% CO(2), 90% N(2) for 24h. In Experiment 1, after IVM/IVF, on Day 2 (n=56), Day 4 (n=48) and Day 5 (n=42) of IVC, embryos were equilibrated for 10 min at 22 degrees C in HEPES (15m M) Tyrode's (HeTy) with 1.4M propylene glycol (PG), 0.125 M sucrose (S), 10% dextran and 10% FBS, loaded into 0.25 ml straws, cooled at 2.0 degrees C/min to -6.0 degrees C and held for 10 min. After seeding, cooling resumed at 0.3 degrees C/min to -30 degrees C and after a 10 min hold, straws were plunged into liquid nitrogen (LN(2)). Straws were thawed in air for 2 min and cryoprotectant was removed by a five-step rinse consisting of 3 min each in HeTY with 0.95 M PG/0.25 M S; 0.95 M PG/0.125 M S; 0.45 M PG/0.125 M S; 0 PG/0.125 M S; 0 PG/0.0625 M S. Contemporary IVM/IVF embryos were used as nonfrozen controls (Day 2, n=14; Day 4, n=26; Day 5, n=35). After 8 days of IVC, the number of embryos developing to blastocysts was recorded and blastocyst cell numbers were counted after staining with Hoechst 33342. In Experiment 1, developmental stage did not affect the survival rate after thawing (Day 2=79%, Day 4=90%, Day 5=98%) and was not different from that of controls (Day 2=89%, Day 4=88%, Day 5=96%). Blastocyst development was similar among days both after cryopreservation (Day 2=59%, Day 4=54%, Day 5=63%) and in controls (Day 2=55%, Day 4=54%, Day 5=58%). Mean (+/-S.D.) cell number of blastocysts was slightly lower (NS) in cryopreserved embryos (Day 2=152+/-19, Day 4=124+/-20, Day 5=121+/-24) than in controls (Day 2=141+/-25, Day 4=169+/-21, Day 5=172+/-19). In Experiment 2, embryos frozen on Day 2 (n=68), Day 4 (n=49) or Day 5 (n=73) were thawed and cultured for 3, 1, or 0 days before transfer by laparotomy to 5 (mean=12.6+/-2.4), 4 (mean=12.2+/-3.7) and 6 (mean=12.0+/-1.6) recipients, respectively. Four recipients were pregnant on Day 21; two from embryos frozen on Day 4 and two from Day 5. Two live kittens were born at 66 days, a third kitten died during parturition at 64 days and a fourth pregnancy aborted by Day 45. In summary, we have shown that a controlled rate cryopreservation technique can be successfully applied to cat embryos produced by IVM/IVF. In vitro development to the blastocyst stage was not affected by the age of embryos at cryopreservation. The births of live kittens after ET of cryopreserved embryos is additional validation of progress toward applying assisted reproductive technology to preservation of endangered felids.  相似文献   

3.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

4.
To study the effect of partial removal of intracytoplasmatic lipids from bovine zygotes on their in vitro and in vivo survival, presumptive zygotes were delipidated by micromanipulation and cocultured with Vero cells in B2+10% FCS. Blastocyst rates of delipidated (n=960), sham (centrifuged but not delipidated, n=830) and control embryos (n=950) were 42.1, 42.3 and 39.9% respectively (P > 0.05). Day 7 blastocysts derived from delipidated zygotes had a mean of 123.9 +/-45.6 nuclei compared to 137.5+/-32.9 for control blastocysts (P > 0.05). The full-term development of delipidated blastocysts after single transfer to recipients was similar to that of control IVF blastocysts (41.2% vs 45.4% respectively). To assess the effect of delipidation on the embryo tolerance to freezing/thawing, delipidated (n=73), control (n=67) and sham (n=50) Day 7 blastocysts were frozen in 1.36 M glycerol + 0.25 M sucrose in PBS. After thawing, embryos were cocultured for 72 h with Vero cells in B2+10% FCS. Survival rates at 24 h were not significantly different between groups. However, in the delipidated group, the survival rate after 48 h in culture was significantly higher than in the control group (56.2 vs 39.8, P < 0.02), resulting in a higher hatching rate after 3 days in culture (45.2 vs 22.4, P < 0.02). Pregnancy rates for delipidated and control frozen/thawed embryos were respectively 10.5 and 22.2% (P > 0.05). Electron microscopic observations showed much fewer lipid droplets (and smaller) in delipated blastocysts than in controls. Taken together, our data show that delipidation of one cell stage bovine embryos is compatible with their normal development to term and has a beneficial effect on their tolerance to freezing and thawing at the blastocyst stage. This procedure, however, alters the developmental potential of such blastocysts, suggesting that maternally inherited lipid stores interfere with metabolic recovery after thawing.  相似文献   

5.
The objective of this study to evaluate the effect of hypotonic stress on developmental potential of hatched blastocysts perivitrification. Hatched mouse blastocysts were vitrified in liquid nitrogen after equilibration in 10% or 20% GL for 5 min and in GFS40 for 30 sec respectively, the survival rates were 93%-97% after the frozen-thawed embryos were cultured in vitro for 24 h. There were no statistical difference between the frozen and the fresh group (P > 0.05). In order to evaluate effects of hypotonic stress on developmental abilities, fresh hatched mouse blastocysts were respectively exposed to 1.00 x, 0.50 x, 0.30 x, 0.25 x and 0.20 x PBS for 30 min, then cultured in mKRB for 24 h, the survival rates were 98%, 99%, 92%, 92% and 50% respectively. The rate in 0.20 X PBS group was significantly lower than in other groups (P < 0.01). When frozen-thawed embryos were directly treated with different osmotic solutions, the survival rates were 88%, 72%, 58%, 11% and 0 respectively in 1.00 x, 0.50 x, 0.30 x, 0.25 x and 0.20 x PBS group. The rate in 1.00 x PBS group was significantly higher than in other groups (P < 0.05). However, when frozen-thawed embryos were first cultured in vitro for 12 h, then exposed to 1.00 x, 0.50 x, 0.30 x, 0.25 x and 0.2 x PBS, the survival rates were 98%, 94%, 82%, 58% and 26% respectively. There was no statistical difference between 1.00 x and 0.50 x PBS group (P > 0.05). Although the rate in 0.30 x, 0.25 x and 0.20 x PBS group was significantly lower than in 1.00 x group(P < 0.01), it was significantly higher than in the same treatment group without in vitro culture(P < 0.05).  相似文献   

6.
A simple one-step method of freezing mouse embryos directly in liquid nitrogen is described. The main objective of this study was to assess post-thaw survival following predehydration in various mixtures of glycerol and sucrose. Also investigated was pretreatment with glycerol prior to dehydration and effects of embryo stage. When sucrose was held constant (0.25 M) and glycerol concentration varied (1.0-4.0 M), post-thaw survival was best (67%) in 2.0 M glycerol. Pretreatment in glycerol provided no advantage over no pretreatment. When glycerol was held constant (2.0 M) and sucrose concentration varied (0-1.0 M), optimum post-thaw survival (81%) was found in 0.5 M sucrose. Morulae survived better than blastocysts (86% vs 72%, respectively). Transfer of thawed embryos frozen by the optimum treatment (2.0 M glycerol + 0.5 M sucrose) resulted in a birthrate of 41%, compared to 54% for fresh controls. This technique could find application in freezing and thawing of livestock embryos on the farm.  相似文献   

7.
The objectives were to evaluate the reexpansion blastocoele rate, post-thaw viability, and in vitro development of canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol (GLY) or 1.5 m ethylene glycol (EG). Fifty-one in vivo-produced canine blastocysts were randomly allocated in two groups: GLY (n = 26) and EG (n = 25). After thawing, embryos from M0 were immediately stained with the fluorescent probes propidium iodide and Hoechst 33 342 to evaluate cellular viability. Frozen-thawed embryos from M3 and M6 were cultured in SOFaa medium + 10% FCS at 38.5°C under an atmosphere of 5% CO2 with maximum humidity, for 3 and 6 days, respectively, and similarly stained. The blastocoele reexpansion rate (24 h after in vitro culture) did not differ between GLY (76.5%) and EG (68.8%). Post-thaw viable cells rate were not significantly different between GLY and EG (66.5 ± 4.8 and 57.3 ± 4.8, respectively, mean ± SEM), or among M0 (62.3 ± 5.7%), M3 (56.9 ± 6.0%), and M6 (66.5 ± 6.0%). In conclusion, canine blastocysts cryopreserved by slow freezing in 1.0 m glycerol or 1.5 m ethylene glycol, had satisfactory blastocoele reexpansion rates, similar post-thawing viability, and remained viable for up to 6 days of in vitro culture.  相似文献   

8.
The aim of the present investigation was to test the effectiveness of a method of vitrifying rat embryos at different stages of development (from early morula to expanding blastocyst) in a double vitrification procedure. Wistar rat embryos were vitrified and warmed in super-fine open-pulled straws (SOPS). Before being plunged into liquid nitrogen, the embryos were exposed to 40% ethylene glycol+0.75 M sucrose in TCM-199+20% fetal calf serum (FCS) for 20s at 38 degrees C. Subsequent warming and direct rehydration of the embryos was conducted in culture medium (TCM-199+20% FCS) at 38 degrees C. Early morula stage (7-10 blastomeres) embryos (n=358) were vitrified, warmed and cultured in vitro (EM group). Batches of these embryos were then cryopreserved again (revitrified) at the early blastocyst (EB group, n=87), blastocyst (B group, n=93) or expanding blastocyst stage (ExpB group, n=73). After the first (EM group) and repeated (EB, B, and ExpB groups) vitrification procedures, developmental rates of 81, 83, 34 and 76%, respectively were achieved (for EM-EB-ExpB P>0.1; for EM, EB, ExpB-B P<0.005). Our data demonstrate the possibility of using the described identical protocol for the SOPS vitrification of rat early morulae, early blastocysts and expanding blastocysts. The low survival rate of blastocysts subjected to double vitrification requires further investigation.  相似文献   

9.
Parthenogenetically activated (PA) embryos exhibit delayed development, a lower blastocyst rate, and less successful development in vitro compared to in vitro fertilized (IVF) embryos. To investigate the possible mechanisms for unsuccessful parthenogenetic development, this study analyzed the chromosome abnormalities and developmental potential of porcine PA embryos. Mature oocytes were electrically activated and cultured in Porcine Zygote Medium-3 (PZM3) supplemented with 3 mg/ml BSA for 6, 7, or 8 days. The percentage of PA blastocysts was lower than that of IVF embryos on days 6 and 7 (16.4 +/- 7.4 vs. 28.7 +/- 3.7; 10.9 +/- 2.8 vs. 21.5 +/- 4.7, P < 0.05; respectively), and the PA blastocysts had significantly fewer nuclei than IVF blastocysts (23.2 +/- 1.8 vs. 29.7 +/- 0.8; 29.7 +/- 3.3 vs. 32.0 +/- 2.4, P < 0.05). The percentage of abnormal PA embryos (including embryos with condensed nuclei, arrested embryos and fragmented embryos) was higher than that of IVF embryos (PA: 52.9 +/- 12.8 vs. 16.4 +/- 7.4 on day 6), and increased with culture time (71.9 +/- 12.1 vs. 10.9 +/- 2.8. on day 7,and 75.0 +/- 22.6 vs. 12.1 +/- 2.3 on day 8, P < 0.05). The Day-6 PA blastocysts (n = 147) were divided into three classes according to the total number of nuclei (<20, 20-39, >40) and into three groups according to the morphological diameter (<150, 150-180, >180 microm). Of the haploid blastocysts, 56.1% had less than 20 nuclei, and 71.5% were less than 150 microm in diameter. Of all (114) blastocysts suitable for analysis, 55.5% displayed chromosomal abnormalities. Among chromosomal abnormalities in PA blastocysts, haploid blastocysts were most prevalent (43.6%), while polyploidy (4.4%) and mixoploidy (7.7%) embryos were less prevalent. Chromosomal abnormalities of porcine PA embryos might contribute to a higher rate of abnormal embryonic development. We suggest that a careful consideration should be given when using the blastocysts with smaller size, and establishing the optimum culture condition for PA embryos development in vitro.  相似文献   

10.
K Nakamura  Y Tsunoda 《Cryobiology》1992,29(4):493-499
This study compares the resistance of the nuclei and the cytoplasm of two-cell mouse embryos to short-term storage at low temperature above 0 degrees C. Two-cell embryos were stored at 4 degrees C for 24-96 h in PB1 containing 0.25, 0.5, 0.75, and 1.0 M sucrose. The development to blastocysts in culture was highest in the presence of 0.5 M sucrose. However, only 3% of the embryos developed into blastocysts after 96 h of storage. On the other hand, the viability of the nuclei of two-cell embryos stored at 4 degrees C was significantly prolonged when they were transplanted into a blastomere of enucleated fresh F1 (C57BL/6JXCBA) two-cell embryos. The proportions of chimeric embryos that developed to blastocysts were 88, 67, 76, 71, 64, 45, 32, and 20% following storage for 0, 48, 72, 96, 120, 144, 168, and 192 h, respectively. In addition, there was no difference in the coat color of the young derived from nuclei stored at 4 degrees C or fresh nuclei, although the proportions of chimeric embryos that developed into live young after transfer tended to decrease with increased storage time. Moreover, the viability of nuclei stored at 4 degrees C for 192 h was confirmed in the germ cell population of chimeric mice mated with albino mice. These results demonstrated that the nuclei in the two-cell mouse embryos were more resistant to storage at low temperature than the cytoplasm.  相似文献   

11.
Sheep embryos of the late morula to early blastocyst stage were frozen, thawed and cultured to test several sucrose solutions for post-thaw dilution of the cryoprotective agent glycerol. Ewes of mixed breeding were superovulated and embryos were flushed from the uterus either surgically or at slaughter 5 d after estrus. Fifty-eight embryos were pooled in microdrops of modified Dulbecco's phosphate buffered saline (MDPBS) then randomly divided into four treatments. A 2 x 2 factorial design was used to compare 0.25 M sucrose in MDPBS as an in-straw cryoprotectant dilution with a standard step-wise dilution procedure within standard fast and slow freeze-thaw systems. After storage in liquid nitrogen for 6 to 8 d, the embryos were thawed and the cryoprotectant (1.4 M glycerol) removed before culture in microdrops of modified synthetic oviduct fluid under paraffin oil in water-saturated 5% CO(2) in air atmosphere at 37 C. No significant interaction was found between the freeze-thaw procedure and cryoprotectant + dilution procedures. Embryos in the fast freeze-thaw procedure had a mean development score of 1.3 +/- 0.3 and those in the slow freeze-thaw procedure had a mean score of 1.2 +/- 0.3. The mean development score 2.0 +/- 0.3 for the standard dilution procedure was superior (P<0.001) to the score of 0.6 +/- 0.2 for the 0.25 M sucrose dilution procedure. In a separate trial, 18 sheep morulae were collected and equilibrated with 1.4 M glycerol in MDPBS. A standard fast freeze-thaw procedure was used and, after 18 d of storage at -196 C, the glycerol was diluted from the embryo with 1.0 M sucrose. Culture was conducted in a similar manner and a mean development score of 1.0 +/- 0.3 was obtained. These results indicate standard cryoprotectant dilution procedures for sheep embryos are superior to dilution with 0.25 M sucrose. In a limited study, dilution with 1.0 M sucrose was also not as effective as standard dilution procedures.  相似文献   

12.
Fragmentation occurs during early developmental stages of electrically activated oocytes and nuclear transfer (NT) embryos. It might contribute to the low developmental rate of porcine NT embryos. The present study was conducted to investigate whether the addition of sugars such as sorbitol or sucrose suppresses fragmentation and supports the development of electrically activated oocytes and NT embryos. The activated oocytes were cultured in Porcine Zygote Medium-3 (PZM-3) supplemented with sorbitol or sucrose for 2 days after electric activation, and then cultured in the PZM-3 for the remaining 4 days. The osmolarities of PZM-3, PZM-3 supplemented with 0.05 or 0.1 M sorbitol, and PZM-3 with 0.05 M sucrose were 269 +/- 6.31, 316 +/- 3.13, 362 +/- 4.37, and 315 +/- 5.03 mOsm, respectively. When parthenogentically activated oocytes were cultured in PZM-3 supplemented with 0.05 M sorbitol or sucrose for the first 2 days and then cultured in PZM-3 without sugar, a significantly higher (P < 0.05) cleavage rate and blastocyst rate were observed. Interestingly, addition of sugar to PZM-3 for 2 days reduced the fragmentation rate compared to PZM-3 without sugar. In NT embryos, sugar addition into PZM-3 increased the fusion rate (84.2% +/- 6.07 vs. 95.1% +/- 2.52), cleavage rate (67.6% +/- 5.80 vs. 77.3% +/- 3.03), and developmental rate to the blastocyst stage (10.2% +/- 0.79 vs. 19.4% +/- 1.77). There was no significant difference between treatments for the number of the blastocysts. In addition the fragmentation rate was reduced compared to PZM-3 without sorbitol (26.1 +/- 4.30 vs. 14.5 +/- 1.74). In conclusion, increasing the osmolarity of PZM-3 through addition of either sorbitol or sucrose for 48 hr increased the cleavage and developmental rate to the blastocyst stage by reducing the fragmentation rate through increasing osmolarity.  相似文献   

13.
Unhatched blastocysts from Large White hyperprolific gilts (n=103) were identified, measured and vitrified using the Open Pulled Straw (OPS) technique to evaluate the effects of the collected blastocyst size and cryoprotectant concentrations used for vitrification, and the number of embryos transferred per recipient. Vitrified/warmed blastocyst viability was estimated in vitro, as the percentage of embryos developing after 72h, and in vivo, on pregnancy Day 30. In the in vitro study, we compared the use of three cryoprotectant concentrations (16.5, 18, or 20% DMSO+16.5, 18, or 20% EG+0.4M sucrose). Survival rates differed significantly between the control (98.3%) and the three cryoprotectant concentrations (67, 62.3, and 57%, respectively). Blastocyst size at vitrification determined the further in vitro development of embryos (26% survival for blastocysts 126-144microm versus 100% for blastocysts >199microm). For the in vivo study, blastocysts were vitrified using cryoprotectant concentrations of 16.5 or 18% DMSO+EG and transferred surgically in groups of 20 or 30 per recipient (n=40). Recipients were slaughtered on pregnancy D30. No significant differences were detected in gestation rates (50-70%) and embryo survival rates (14.7-25%), although survival was higher (P=0.0003) when 20 blastocysts were transferred compared to 30 (24.7% versus 15.5%). Our findings indicate that best results, in terms of subsequent in vivo embryo survival, were achieved after transferring 20 embryos at the blastocyst or expanded blastocyst stage, previously vitrified using cryoprotectant concentrations of 16.5 or 18%.  相似文献   

14.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

15.
To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos.  相似文献   

16.
The aim of this work was to evaluate whether minimizing the glucose concentration during culture or replacing the hexose with other energy substrates and/or embryotrophic compounds would affect the in vitro development, the resistance to cryopreservation and the sex ratio of bovine embryos. In vitro matured and fertilized oocytes were randomly assigned to 4 groups for in vitro culture, that differed in the energy substrates included: group A) 1.5 mM glucose, as in standard SOF; group B) 0.15 mM glucose; group C) 0.125 mM G3P, in the presence of 0.15 mM glucose and group D) 0.34 mM citrate, in combination with 2.77 mM myo-inositol. Blastocysts were evaluated on day 7, then vitrified by cryotop in 16.5% DMSO, 16.5% EG and 0.5 M sucrose and warmed in decreasing concentration of sucrose (0.25 to 0.15 M sucrose). The survival rates were assessed after 24 h in vitro culture. Finally, the blastocysts produced were sexed by PCR. An increased blastocyst rate was recorded in groups B, C and D, i.e., when glucose concentration was reduced, compared to group A (28.2, 41.0, 35.7 and 35.8, respectively in groups A, B, C and D; P < 0.01). However, the embryos cultured in group D showed the slowest developmental speed, indicated by the lowest percentage of advanced stage-embryos (expanded and hatched blastocysts) out of the total blastocysts (56.1, 45.8, 56.9 and 31.8 %, respectively in groups A, B, C and D; P < 0.01). Furthermore, survival rates after 24 h culture of vitrified-warmed blastocysts also decreased in group D (73.3, 73.1, 71.4 and 58.4%, respectively in groups A, B, C and D; P < 0.01). Interestingly, in group D a higher percentage of female embryos was obtained compared to group A, with intermediate values in groups B and C (45.6, 53.4, 50.0 and 61.5%, respectively in groups A, B, C and D; P < 0.05). In conclusion, it was demonstrated that the energy substrate during in vitro culture affects both the production and the viability of blastocysts. Furthermore, manipulating the metabolic profile of embryos during in vitro culture may have an impact on sex ratio.  相似文献   

17.
The survival of ovine embryos (morulae and blastocysts) either frozen by a conventional method or vitrified was investigated in culture. In Experiment I, embryos were vitrified using a solution containing 25% propylene glycol and 25% glycerol. A group of embryos (simulated control) was processed without freezing to evaluate the toxicity of the vitrification solution. In Experiment II, embryos were exposed to a solution of PBS containing 10% glycerol and 0.25 M sucrose placed horizontally in a programmable freezer. Automatic seeding was applied at -7 degrees C in 2 positions on straws and cooled at -0.3 degrees C/min to -25 degrees C and then stored in liquid nitrogen. In vitro development rates of vitrified embryos were 12% (morulae) and 19% (blastocysts). Simulated embryos showed a higher rate of survival than embryos cryopreserved by vitrification (67 and 63%, morulae and blastocysts respectively). In conventional cooling, the blastocysts showed the highest viability percentage (67%) of all the experimental groups but these values decreased significantly in morulae (31%). Differences in temperature between straws placed in distinct positions in the freezing chamber and thermic deviation were observed when automatic seeding was applied. Embryo viability differed from 51 to 75% according the relative position of the embryos within the chamber. Survival was higher when automatic seeding was applied on the meniscus of the embryo column versus the central point of this column (65 vs 21%). The damage of both cryopreservation methods on zona pellucida integrity (27 and 35% in vitrified and conventionally frozen embryos, respectively) had no effect on the in vitro survival.  相似文献   

18.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

19.
This study was conducted to examine pregnancy progression and fetal characteristics following transfer of vitrified bovine nuclear transfer versus in vivo-derived embryos. Nuclear transfer (NT) was conducted using cumulus cells collected from an elite Holstein-Friesian dairy cow. Expanding and hatching blastocysts on Day 7 were vitrified using liquid nitrogen surface vitrification. Day 7 in vivo embryos, produced using standard superovulation procedures applied to Holstein-Friesian heifers (n=6), were vitrified in the same way. Following warming, embryos were transferred to synchronized recipients (NT: n=65 recipients; Vivo: n=20 recipients). Pregnancies were monitored by ultrasound scanning on Days 25, 45 and 75 and a sample of animals were slaughtered at each time point to recover the fetus/placenta for further analyses. Significantly more animals remained pregnant after transfer of in vivo-derived embryos than NT embryos at all time points: Day 25 (95.0 versus 67.7%, P<0.05), Day 45 (92.8 versus 49.1%, P<0.01) and Day 75 (70.0 versus 20.8%, P<0.0). There was no significant difference (P=0.10) in the weight of the conceptus on Day 25 from NT transfers (1.14+/-0.23 g, n=8) versus in vivo transfers (0.75+/-0.19 g, n=8). On Day 45, there was no significant difference in the weight of either fetus (P=0.393) or membranes (P=0.167) between NT embryos (fetus: 2.76+/-0.40, n=12; membranes: 59.0+/-10.0, n=11) or in vivo-derived embryos (fetus: 2.60+/-0.15, n=6; membranes: 41.8+/-5.2, n=4). However, on Day 75 the weight of the fetus and several of the major organs were heavier from NT embryos. These data suggest that morphological abnormalities involving the fetus and the placenta of cloned pregnancies are manifested after Day 45.  相似文献   

20.
Weber PK  Youngs CR 《Theriogenology》1994,41(6):1291-1298
The objective of this study was to examine the potential toxicity of sucrose (Experiment 1) and of various cryoprotectants (Experiment 2) to porcine preimplantation embryos. In Experiment 1, 65 embryos, ranging from compact morulae to hatched blastocysts, were allocated within donor female across 5 concentrations of sucrose (0, 0.25, 0.50, 1.0, 2.0 M) to determine the highest concentration that would not inhibit subsequent embryo development. After a 48-h post-treatment culture period, the embryos were stained and cell nuclei were counted. The concentration of sucrose affected embryo development (P < 0.001) and embryo quality (P < 0.001). Embryos placed into 2.0 M sucrose exhibited poorer development and quality than embryos at the lower 4 concentrations, which were not different from one another. In Experiment 2, 182 embryos of the same developmental stages as in Experiment 1 were collected from 16 donors. Embryos were allotted within donor female to 2 of the 5 concentrations (10, 20, 30, 40, or 50%) of each of 3 cryoprotectants (ethylene glycol, propylene glycol, glycerol). After a 30-sec exposure to a cryoprotectant, the embryos were cultured and stained as in Experiment 1. As the concentration of an individual cryoprotectant increased beyond 30%, embryo development decreased. Embryos exposed to glycerol or propylene glycol exhibited poorer development than did embryos placed into ethylene glycol, especially at concentrations of 40% or higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号