首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems.  相似文献   

2.
3.
The first multicomponent phosphorelay, regulating stalk biogenesis, has been identified in Caulobacter crescentus using a bioinformatic screen, targeted disruptions of each histidine kinase and response regulator, and a new technique called phosphotransfer profiling, in which a purified histidine kinase or histidine phosphotransferase is simultaneously assayed for the ability to phosphorylate each purified response regulator protein from one organism. This powerful combination of approaches will allow future researchers to map the interactions among all two-component signal transduction proteins in genetically tractable bacteria with sequenced genomes.  相似文献   

4.
Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.  相似文献   

5.
The transfer of the phosphoryl group from a histidine kinase to a response regulator forms the basis of bacterial signal transduction. The critical question of how a component of a signal transduction system specifically associates with its partner to produce the ideal environment for phosphotransfer is addressed in this review in the light of the structure of the Spo0F-Spo0B complex in Bacillus subtilis.  相似文献   

6.
Novel domains of the prokaryotic two-component signal transduction systems   总被引:31,自引:0,他引:31  
The archetypal two-component signal transduction systems include a sensor histidine kinase and a response regulator, which consists of a receiver CheY-like domain and a DNA-binding domain. Sequence analysis of the sensor kinases and response regulators encoded in complete bacterial and archaeal genomes revealed complex domain architectures for many of them and allowed the identification of several novel conserved domains, such as PAS, GAF, HAMP, GGDEF, EAL, and HD-GYP. All of these domains are widely represented in bacteria, including 19 copies of the GGDEF domain and 17 copies of the EAL domain encoded in the Escherichia coli genome. In contrast, these novel signaling domains are much less abundant in bacterial parasites and in archaea, with none at all found in some archaeal species. This skewed phyletic distribution suggests that the newly discovered complexity of signal transduction systems emerged early in the evolution of bacteria, with subsequent massive loss in parasites and some horizontal dissemination among archaea. Only a few proteins containing these domains have been studied experimentally, and their exact biochemical functions remain obscure; they may include transformations of novel signal molecules, such as the recently identified cyclic diguanylate. Recent experimental data provide the first direct evidence of the participation of these domains in signal transduction pathways, including regulation of virulence genes and extracellular enzyme production in the human pathogens Bordetella pertussis and Borrelia burgdorferi and the plant pathogen Xanthomonas campestris. Gene-neighborhood analysis of these new domains suggests their participation in a variety of processes, from mercury and phage resistance to maintenance of virulence plasmids. It appears that the real picture of the complexity of phosphorelay signal transduction in prokaryotes is only beginning to unfold.  相似文献   

7.
His-Asp phosphorelays are widespread signal transduction mechanisms in bacteria, fungi, and higher plants. In order to investigate a His-Asp phosphorelay network in filamentous fungi, which has been genetically characterized in part, we attempted to construct an in vitro phosphotransfer network in Aspergillus nidulans comprising all the necessary components. As a first step, we established an in vitro phosphotransfer system with a histidine-containing phosphotransmitter YpdA, a response regulator SrrA, and a bacterial histidine kinase ArcB as a phosphate donor. We demonstrated the phosphotransfer from ArcB to A. nidulans YpdA and the subsequent transfer from YpdA to SrrA. This is the first direct biochemical evidence for the presence of the phosphotransfer system in filamentous fungi. Furthermore, a retrograde phosphorylation from YpdA to FphA, a histidine kinase similar to bacterial phytochrome, was found. The overall picture of the His-Asp phosphorelays in A. nidulans is discussed based on the results of the in vitro study.  相似文献   

8.
Two-component and phosphorelay signal transduction systems are the major means by which bacteria recognize and respond to a variety of environmental stimuli. Although several model systems, including sporulation in Bacillus subtilis and chemotaxis in Escherichia coli, have been extensively studied, the two-component signal transduction systems in industrially important actinomycetes are not well studied. We report the molecular and biochemical characterization of a novel two-component signal system, amrA-amkA,from the rifamycin-SV-producing Amycolatopsis mediterranei U32. The deduced sequences of amkAand amrA contain all the structural features that are highly conserved in the typical bacterial histidine kinases and response regulators, respectively. BLAST analyses showed that AmrA and AmkA displayed high similarities to AfsQ1/AfsQ2 of Streptomyces coelicolor and MtrA/MtrB of Mycobacterium tuberculosis. The amrAand amkA genes were over-expressed and the gene products were purified from E. coli. Biochemical studies showed that AmkA is able to autophosphorylate, supporting its functional assignment as a histidine kinase. That AmrA functions as the cognate response regulator for histidine kinase AmkA was demonstrated by in vitro phosphotransfer from [gamma-(32)P]ATP-labeled AmkA to AmrA. Rifamycin SV production was also decreased by 10-20% in amrAor amkA gene disruption mutants under the tested condition. Although the detailed regulatory mechanism is still unknown, this is the first report regarding the involvement of two-component signal systems in rifamycin biosynthesis in the genus Amycolatopsis.  相似文献   

9.
Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.  相似文献   

10.
To address the growing need for new antimicrobial agents, we explored whether inhibition of bacterial signaling machinery could inhibit bacterial growth. Because bacteria rely on two-component signaling systems to respond to environmental changes, and because these systems are both highly conserved and mediated by histidine kinases, inhibiting histidine kinases may provide broad spectrum antimicrobial activity. The histidine kinase ATP binding domain is conserved with the ATPase domain of eukaryotic Hsp90 molecular chaperones. To find a chemical scaffold for compounds that target histidine kinases, we leveraged this conservation. We screened ATP competitive Hsp90 inhibitors against CckA, an essential histidine kinase in Caulobacter crescentus that controls cell growth, and showed that the diaryl pyrazole is a promising scaffold for histidine kinase inhibition. We synthesized a panel of derivatives and found that they inhibit the histidine kinases C. crescentus CckA and Salmonella PhoQ but not C. crescentus DivJ; and they inhibit bacterial growth in both Gram-negative and Gram-positive bacterial strains.  相似文献   

11.
Signal transduction systems comprising histidine kinases are suggested as new molecular targets of antibiotics. The important human fungal pathogen Candida albicans possesses three histidine kinases, one of which is the type III histidine kinase CaNik1, which activates the MAP kinase Hog1. We established a screening system for inhibitors of this class of histidine kinases by functional expression of the CaNIK1 gene in S. cerevisiae. This transformant was susceptible to fungicides to which the wild type strain was resistant, such as fludioxonil and ambruticin. Growth inhibition correlated with phosphorylation of Hog1 and was dependent on an intact Hog1 pathway. At the N-terminus the histidine kinase CaNik1 has four amino acid repeats of 92 amino acids each and one truncated repeat of 72 amino acids. Within these repeats we identified 9 HAMP domains with a paired structure. We constructed mutants in which one or two pairs of these domains were deleted. S. cerevisiae transformants expressing the full-length CaNIK1 showed the highest sensitivity to the fungicides, any truncation reduced the susceptibility of the transformants to the fungicides. This indicates that the HAMP domains are decisive for the mode of action of the antifungal compounds.  相似文献   

12.
13.
Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain.  相似文献   

14.
Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003, respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.  相似文献   

15.
Shrivastava R  Ghosh AK  Das AK 《FEBS letters》2007,581(9):1903-1909
The two-component signal transduction system from Mycobacterium tuberculosis bears a unique three-protein system comprising of two putative histidine kinases (HK1 and HK2) and one response regulator TcrA. By sequence analysis, HK1 is found to be an adenosine 5'-triphosphate (ATP) binding protein, similar to the nucleotide-binding domain of homologous histidine kinases, and HK2 is a unique histidine containing phosphotransfer (HPt)-mono-domain protein. HK1 is expected to interact with and phosphorylate HK2. Here, we show that HK1 binds 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate monolithium trisodium salt and ATP with a 1:1 stoichiometric ratio. The ATPase activity of HK1 in the presence of HK2 was measured, and phosphorylation experiments suggested that HK1 acts as a functional kinase and phosphorylates HK2 by interacting with it. Further phosphorylation studies showed transfer of a phosphoryl group from HK2 to the response regulator TcrA. These results indicate a new mode of interaction for phosphotransfer between the two-component system proteins in bacteria.  相似文献   

16.
Adaptation to an environmental stress is essential for cell survival in all organisms, from E. coli to human. To respond to changes in their surroundings, bacteria utilize two-component systems (TCSs), also known as histidyl-aspartyl phosphorelay (HAP) systems that consist of a histidine kinase (HK) sensor and a cognate response regulator (RR). While mammals developed complex signaling systems involving serine/threonine/tyrosine kinases in stress response mechanisms, bacterial TCS/HAP systems represent a simple but elegant prototype of signal transduction machineries. HKs are known as a seductive target for anti-bacterial therapeutic development, because of their significance in pathological virulence in some bacteria such as Salmonella enterica. Recent molecular and structural studies have shed light on the molecular basis of the signaling mechanism of HK sensor kinases. This review will focus on recent advancements in structural investigation of signal sensing and transducing mechanisms by HKs, which is critical to our understanding of bacterial biology and pathology.  相似文献   

17.
Two-component signal transduction systems allow bacteria to sense and respond rapidly to changes in their environment leading to specific gene activation or repression. These two-component systems are integral in the ability of pathogenic bacteria to mount and establish a successful infection within the host and, consequently, have been recognized as targets for new anti-microbial agents. In this paper, we define the site and mechanism of action of several previously identified inhibitors of bacterial two-component systems. We show that the most potent inhibitors target the carboxyl-terminal catalytic domain of the sensor kinase and exert their affect by causing structural alterations of the kinase leading to aggregation. Recognition of this phenomenon has important implications for the development of novel inhibitors of two-component systems and should facilitate the rapid identification and elimination of compounds with nonspecific affects from medicinal chemistry drug discovery programs.  相似文献   

18.
Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used.  相似文献   

19.
To identify a novel class of antibiotics, we have developed a high-throughput genetic system for targeting the homodimerization (HD system) of histidine kinase (HK), which is essential for a bacterial signal transduction system (two-component system, TCS). By using the HD system, we screened a chemical library and identified a compound, I-8-15 (1-dodecyl-2-isopropylimidazole), that specifically inhibited the dimerization of HK encoded by the YycG gene of Staphylococcus aureus and induced concomitant bacterial cell death. I-8-15 also showed antibacterial activity against MRSA (methicillin-resistant S. aureus) and VRE (vancomycin-resistant Enterococcus faecalis) with MICs at 25 and 50 microg/ml, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号