首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

2.
A high-performance liquid chromatographic method was developed to assay 1-β- -arabinofuranosyl-E-5-(2-bromovinyl)uracil and its metabolite (E)-5-(2-bromovinyl)uracil in serum. The chloro analogue of the parent drug is used as internal standard. Human serum samples were assayed to establish the pharmacokinetic parameters. Acetonitrile, used as a protein precipitant, was evaporated to dryness and the residue, containing the analytes and internal reference, was dissolved in mobile phase prior to chromatographic analysis. The minimum quantifiable level was 0.02 μg of each analyte per ml of serum.  相似文献   

3.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

4.
A sensitive high-performance liquid chromatographic method for a routine assay of nadolol in serum is described. Serum samples spiked with atenolol (internal standard) were extracted with diethyl ether. After centrifugation, the organic layer was evaporated to dryness. The residue was redissolved in the mobile phase and injected onto an octadecyl silica column (150 mm × 4.6 mm I.D.). The mobile phase was 0.05 M ammonium acetate (pH 4.5)—acetonitrile (85:15, v/v). Fluorometric detection (excitation 230 nm, emission 300 nm) was used. The minimum detectable level of nadolol in serum was 1 ng/ml.  相似文献   

5.
Prednisolone, prednisolone acetate and prednisolone sodium phosphate are glucocorticoids used for ocular, anti-inflammatory therapy. A reversed-phase high-performance liquid chromatographic assay using ultraviolet detection has been developed that affords baseline resolution of the above analytes in balanced salt solutions and rabbit aqueous humor. The drugs can be quantified at 0.025–0.05 μg/ml in the above matrices; 6α-methylprednisolone is used as the internal standard. Both esters of prednisolone are vulnerable to chemical and enzymatic hydrolysis giving prednisolone. Analysis of aqueous humor samples shows prednisolone acetate penetrating/metabolizing primarly to prednisolone; prednisolone sodium phosphate penetrates the cornea giving the ester and alcohol.  相似文献   

6.
A high-performance liquid chromatographic method for the determination of piribedil and its p-hydroxylated, catechol and N-oxide metabolites in plasma is described. After addition of an internal standard (buspirone), the plasma samples were subjected to a three-step extraction procedure. The final extracts were evaporated to dryness under nitrogen, and the residues were reconstituted in 100 μl of mobile phase (0.01 M phosphate buffer—acetonitrile, 50:50, v/v) and chromatographed by acetonitrile gradient elution on a C18 reversed-phase column coupled to an ultraviolet detector set at 240 nm. The method was selective for piribedil and its metabolites, and sufficiently sensitive and precise for studies aimed at elucidating the role of the metabolites in the parent drug's pharmacological effects.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic assay (HPLC) was utilized for monitoring xanomeline (LY246708/NNC 11–0232) and a metabolite, desmethylxanomeline, in human plasma. Xanomeline, desmethylxanomeline and internal standard were extracted from plasma with hexane at basic pH. The organic solvent extract was evaporated to dryness with nitrogen and the dried residue was reconstituted with 0.2 M HCl-methanol (50:50, v/v). A Zorbax CN 150 × 4.6 mm I.D., 5-μm column and mobile phase consisting of 0.5% (5 ml/l) triethylamine (TEA) adjusted to pH 3.0 with concentrated orthophosphoric acid-tetrahydrofuran (THF) (70:30, v/v) produced consistent resolution of analytes from endogenous co-extracted plasma components. Column effluent was monitored at 296 nm/0.008 a.u.f.s. and the assay limit of quantification was 1.5 ng/ml. A linear response of 1.5 to 20 ng/ml was sufficient to monitor plasma drug/metabolite concentrations during clinical trials. HPLC assay validation as well as routine assay quality control (QC) samples indicated assay precision/accuracy was better than ±15%.  相似文献   

8.
A gas chromatographic—mass spectrometric assay using selected ion monitoring is compared with a high-performance liquid chromatographic assay using an electrochemical detector for single-dose studies of the psychotherapeutic phenothiazine drug chlorpromazine. Measurements were made after extraction of chlorpromazine and the internal standard, prochlorperazine, from basified plasma with an isopropanol—pentane solvent mixture. Following evaporation of the organic solvents the residue was reconstituted in a small volume of methanol and subjected to gas chromatographic—mass spectrometric selected ion detection. The residual sample was then evaporated and made up in a larger volume of acetonitrile and analyzed by high-performance liquid chromatography using an electrochemical detector. These specific methods display excellent correlation for plasma concentration determinations in the range of 0.25–10 ng ml−1 and will allow for the study of the pharmacokinetics of chlorpromazine following single low doses of the drug.  相似文献   

9.
A new reversed-phase high-performance liquid chromatographic method allowing simultaneous measurement of plasma concentrations of disopyramide and quinidine is described. Disopyramide and quinidine were separated on a reversed-phase column using 0.05 M phosphate buffer (pH 3.0)—acetonitrile (73:27, v/v), as mobile phase and the peaks were monitored by UV absorbance at the wavelengths of 254 and 325 nm. The drugs were extracted from alkaline plasma with chloroform containing the internal standard. The organic phase was evaporated to dryness and the residue was redissolved in a small volume of the mobile phase before analysis by high-performance liquid chromatography. The method is convenient and reliable in routine monitoring of both drugs.  相似文献   

10.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

11.
A reversed-phase, column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of a new thymidylate synthase inhibitor in human plasma. The compound and an internal standard are extracted from plasma using a Certify II solid-phase cartridge. Extracts are evaporated to dryness and the residue is reconstituted with mobile phase buffer. The analytes are separated from polar interferences and buffer salts originating from the elution step on a 4-mm YMC Basic pre-column. The fraction containing the analytes is further separated on a 25-cm YMC Basic column. The analytes are detected by their absorbance at 250 nm. The limit of quantitation is 10 ng/ml. The method is linear from 10 ng/ml to 80 μg/ml using three standard curve ranges. Validation studies for all three ranges show the method to be reproducible. The method has been successfully used to support pharmacokinetic studies.  相似文献   

12.
A column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of dapoxetine, and its mono- and di-desmethyl metabolites in human plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane—ethyl acetate. The organic extract was evaporated to dryness and the residue reconstituted with acetonitrile. The analytes were separated from late-eluting endogenous substances on a Zorbax RX-C8 pre-column. The front-cut fraction containing the analytes was further separated on a second RX-C8 column. The analytes were detected by their native fluorescence, using excitation and emission wavelengths of 230 and 330 nm, respectively. The limit of quantitation was determined to be 20 ng/ml, and the response was linear from 20 to 200 ng/ml. The method has been successfully applied to human plasma samples in a Phase I study.  相似文献   

13.
A high-performance liquid chromatographic method for the determination of the anthelmintic nitroxynil has been developed. The drug was extracted from cattle muscle tissue with 1% triethylamine in acetonitrile. The extract was evaporated to dryness and taken up in 0.1 M ammonium acetate—acetonitrile (50:50, v/v). The extract was then injected onto a polymeric anion-exchange precolumn. After clean-up with 0.1 M ammonium acetate—acetonitrile (50:50, v/v) for 5 min, the precolumn was eluted with 1% aqueous trifluoroacetic acid—acetonitrile (50:50, v/v) onto a PLRP-S polymer column and chromatographed with a mobile phase of 0.01 M phosphate pH 7—acetonitrile (80:20, v/v). Detection was by ultraviolet at 273 nm. Average recoveries at four levels from 0.005 to 1.000 mg kg−1 were > 88%. The limit of determination was 0.005 mg kg−1.  相似文献   

14.
15.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

16.
A high-performance liquid chromatographic (HPLC) assay for measuring cytosolic glutathione S-transferase activity with styrene oxide is described. After incubating lung or liver cytosol with reduced glutathione and styrene oxide, unreacted styrene oxide is extracted into ethyl acetate. An aliquot of the aqueous phase is evaporated to dryness and reconstituted in the mobile phase for HPLC analysis. The two glutathione conjugates of styrene oxide [S-(1-phenyl-2-hydroxyethyl)glutathione and S-(2-phenyl-2-hydroxyethyl)glutathione] are separated in less than 10 min; quantitation of transferase activity is based on the comparison of the UV absorbance of the two conjugates at 254 nm with synthetic conjugate standards. As little as 1 nmole of either conjugate can be quantitated with good precision. This assay has advantages over previously published methods for measuring styrene oxide glutathione S-transferase activity as it does not depend on the use of relatively unstable and expensive radiolabelled substrates.  相似文献   

17.
A reversed-phase high-performance liquid chromatographic assay for the analysis of γ-carboxyglutamic acid (Gla) in urine and bone protein hydrolyzates is described. The method employs precolumn derivatization with o-phthalaldehyde and mercaptoethanol. Gla was quantified by reference to an internal standard (β-carboxyaspartic acid). The “within-run” coefficient of variation of the assay for Gla in urine was between 2.1 and 3.4%, and that for bone protein hydrolyzates was 3.2%. The “between-run” coefficient of variation ranged from 4.1 to 5.5%. There was good agreement between the measurement of urinary Gla by high-performance liquid chromatography and amino acid analyzer. Free Gla could not be detected in serum.  相似文献   

18.
A rapid, sensitive and reproducible reversed-phase high-performance liquid chromatographic assay was developed for the determination of norfloxacin. Following protein precipitation with 10% trichloroacetic acid, norfloxacin and the internal standard enoxacin were extracted from plasma with chloroform, dried and reconstituted in the mobile phase. The chromatographic separation of norfloxacin and the internal standard enoxacin was achieved on a C8 column with fluorescence detection set at 280 and 418 nm for excitation and emission, respectively. The peaks with a resolution factor greater than 1.5 were free from interferences. Excellent linearity (r2 0.998) was observed over the concentration range 0.025–5.0 μg/ml in plasma. The inter-assay variability was 13.6% or less at all concentrations examined. The suitability of the assay for pharmacokinetic studies was determined by measuring norfloxacin concentration in rat plasma after administration of a single intravenous 10 mg/kg dose.  相似文献   

19.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

20.
Modifications of existing rapid high-performance liquid chromatographic procedures for the determination of furosemide in plasma were made in order to achieve greater sensitivity. To a small volume of plasma was added an internal standard structurally related to furosemide. Then, following previously described procedures, acetonitrile was added to precipitate the proteins and the clear supernatant was separated. However prior to injection of the supernatant the pH and composition of the sample were adjusted. This modification of the sample enabled an injection volume of up to 300 μl of the supernatant to be injected onto the chromatographic column. The effluent was monitored spectrofluorimetrically. A standard linear calibration curve with a mean precision of ± 4.4% was obtained for plasma samples containing 20–900 ng/ml of furosemide. Two structurally related compounds were used as internal standards in the furosemide assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号