首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of plant organs relies on coordinated cell proliferation followed by cell growth, but the nature of the cell-cell signal that specifies organ size remains elusive. The Arabidopsis receptor-like kinase (RLK) ERECTA regulates inflorescence architecture. Our previous study using a dominant-negative fragment of ERECTA revealed the presence of redundancy in the ERECTA-mediated signal transduction pathway. Here, we report that Arabidopsis ERL1 and ERL2, two functional paralogs of ERECTA, play redundant but unique roles in a part of the ERECTA signaling pathway, and that synergistic interaction of three ERECTA-family RLKs define aerial organ size. Although erl1 and erl2 mutations conferred no detectable phenotype, they enhanced erecta defects in a unique manner. Overlapping but distinct roles of ERL1 and ERL2 can be ascribed largely to their intricate expression patterns rather than their functions as receptor kinases. Loss of the entire ERECTA family genes led to striking dwarfism, reduced lateral organ size and abnormal flower development, including defects in petal polar expansion, carpel elongation, and anther and ovule differentiation. These defects are due to severely reduced cell proliferation. Our findings place ERECTA-family RLKs as redundant receptors that link cell proliferation to organ growth and patterning.  相似文献   

2.
Shoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking. Here, we report that ERECTA (ER) receptor kinase family members cooperatively mediate the morphological alterations that are stimulated by activation of UNI proteins. uni-1D is a gain-of-function mutation in the UNI gene and uni-1D mutants exhibit early termination of inflorescence stem growth and also formation of extra AMs at leaf axils. The former defect involves modulation of the SAM activity and is suppressed by er mutation. Though the AM phenotype is not affected by a single er mutation, it is suppressed by simultaneous mutations of ER-family members. It was previously shown that trans-zeatin (tZ)-type cytokinins were involved in the morphological phenotypes of uni-1D mutants and that expression of CYP735A2, which is essential for biosynthesis of tZ-type cytokinins, was modulated in uni-1D mutants. We show that this modulation of CYP735A2 expression requires activities of ER-family members. Moreover, the ER activity in UNI-expressing cells contributes to all morphological phenotypes of uni-1D mutants, suggesting that a cross-talk between ER-family-dependent and UNI-triggered signaling pathways plays a significant role in the morphological alterations observed in uni-1D mutants.  相似文献   

3.
4.
5.
6.
A subset of the genes required for transport from the endoplasmic reticulum (ER) to the Golgi complex in Saccharomyces cerevisiae was found to interact genetically. While screening a yeast genomic library for genes complementing the ER-accumulating mutant bet1 (A. Newman and S. Ferro-Novick, J. Cell Biol. 105: 1587-1594, 1987), we isolated BET1 and BOS1 (bet one suppressor). BOS1 suppresses bet1-1 in a gene dosage-dependent manner, providing greater suppression when it is introduced on a multicopy vector than when one additional copy is present. The BET1 and BOS1 genes are not functionally equivalent; overproduction of BOS1 does not alleviate the lethality associated with disruption of BET1. We also identified a pattern of genetic interactions among these genes and another gene implicated in transport from the ER to the Golgi complex: SEC22. Overproduction of either BET1 or BOS1 suppresses the growth and secretory defects of the sec22-3 mutant over a wide range of temperatures. Further evidence for genetic interaction was provided by the finding that a bet1 sec22 double mutant is inviable. Another mutant which is blocked in transport from the ER to the Golgi complex, sec21-1, demonstrates a more limited ability to be suppressed by the BET1 gene. The interactions we observed are specific for genes required for transport from the ER to the Golgi complex. The products of the genes involved are likely to have a direct role in transport, as bet1-1 and sec22-3 begin to display their mutant phenotypes within 5 min of a shift to the restrictive temperature.  相似文献   

7.
8.
Retrograde transport of proteins from the Golgi to the endoplasmic reticulum (ER) has been the subject of some interest in the recent past. Here a new thermosensitive yeast mutant defective in retrieval of dilysine-tagged proteins from the Golgi back to the endoplasmic reticulum was characterized. The ret4-1 mutant also exhibited a selective defect in forward ER-to-Golgi transport of some secreted proteins at the non-permissive temperature. The corresponding RET4 gene was found to encode Glo3p, a GTPase-activating protein (GAP) specific for ADP-ribosylation factor (ARF). In vitro, the Glo3 thermosensitive mutant showed a reduced ARF1-GAP activity. The Glo3 protein belongs to a family of zinc finger proteins that may include additional ARF-GAPs. Gene deletion experiments of other family members showed that only GLO3 deletion resulted in impaired retrieval of dilysine-tagged proteins back to the ER. These results demonstrate that Glo3p is the main ARF-GAP specifically involved in ER retrieval.  相似文献   

9.
Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.  相似文献   

10.
11.
Mutations in 13 genes affecting muscle development in Drosophila have been examined in pairwise combinations for evidence of genetic interactions. Heterozygous combinations of mutations in five genes, including the gene coding for myosin heavy chain, result in more severe phenotypes than respective single heterozygous mutant controls. The various mutant interactions include examples showing allele-specific intergenic interactions, gene specific interactions, and allele-specific intragenic complementations, suggesting that some interactions result from the manner in which mutant gene products associate. Interactions that result from alterations in ``+' gene copy number were also uncovered, suggesting that normal myofibril development requires that the relative amounts of respective gene products produced be tightly regulated. The importance of the latter parameter is substantiated by the finding that all five interacting loci map to disperse haploinsufficient or haplolethal regions of the genome. The implications of the present findings are discussed in relation to pursuing the phenomena involving genetic interactions to identify new genes encoding interacting myofibrillar proteins, to examine the nature of intermolecular interactions in mutant and normal development and to decipher the quantitative and temporal regulation of a large family of functionally related gene products.  相似文献   

12.
13.
14.
15.
Mutations in the suf9, suf10, and suf11 genes of yeast suppress + 1 nucleotide (nt) insertions in proline codons. Nucleotide sequence analysis indicates that the suf9 and suf11 genes are members of the proline tRNA(UGG) gene family, which also includes three other previously identified genes, suf7, suf8, and trn1. All five members of this gene family contain introns. The suf9 and suf11 introns are 31 and 30 nt in length, respectively, and are similar but not identical in sequence to other introns within the family. The suf10 gene is identical in sequence to suf2, which was shown previously to encode proline tRNA(IGG). Both members of this gene family lack introns. Alleles of suf9, suf10, and suf11 that confer frameshift suppression were also analyzed. The SUF9-1 allele results in a G----U substitution at nt position 39 in the anticodon stem. The recessive suf11-1 allele is a double mutant containing the same nt position 39 alteration as in SUF9-1 plus a second U----A substitution at nt position 38 in the anticodon loop. The SUF10-1 suppressor mutation corresponds to a +1G insertion in the anticodon loop. Since the nt substitutions in suf11-1 alter the sequence of the 3' exon/intron boundary, the double mutant pre-tRNA was tested for its ability to be cleaved in vitro by tRNA-splicing endonuclease. It was found that suf11-1 pre-tRNA is cleaved with reduced efficiency at the 3' splice junction.  相似文献   

16.
17.
Lai CP  Lee CL  Chen PH  Wu SH  Yang CC  Shaw JF 《Plant physiology》2004,134(4):1586-1597
  相似文献   

18.
The arabinose-sensitive ara1-1 mutant of Arabidopsis is deficient in arabinose kinase activity. A candidate for the ARA1 gene, ISA1, has been previously identified through the Arabidopsis genome sequencing initiative. Here we demonstrate that (1) the ARA1 gene coincides with ISA1 in a positional cloning strategy; (2) there are mutations in the ISA1 gene in both the ara1-1 mutant and an intragenic suppressor mutant; and (3) the ara1-1 and suppressor mutant phenotypes can be complemented by the expression of the ISA1 cDNA in transgenic plants. Together these observations confirm that ISA1 is the ARA1 gene. ARA1 is a member of the galactose kinase family of genes and represents a new substrate specificity among this and other families of sugar kinases. A second gene with similarities to members of the galactose kinase gene family has been identified in the EST database. A 1.8 kb cDNA contained an open reading-frame predicted to encode a 496 amino acid polypeptide. The GAL1 cDNA was expressed in a galK mutant of Escherichia coli and in vitro assays of extracts of the strain expressing GAL1 confirmed that the cDNA encodes a galactose kinase activity. Both GAL1 and ARA1 cross-hybridise at low stringency to other sequences suggesting the presence of additional members of the galactose kinase gene family.  相似文献   

19.
IAA17/AXR3: biochemical insight into an auxin mutant phenotype   总被引:22,自引:0,他引:22       下载免费PDF全文
The Aux/IAA genes are rapidly and specifically induced by the plant hormone auxin. The proteins encoded by this gene family are short-lived nuclear proteins that are capable of homodimerizing and heterodimerizing. Molecular, biochemical, and genetic data suggest that these proteins are involved in auxin signaling. The pleiotropic morphological phenotype and altered auxin responses of the semidominant axr3-1 mutant of Arabidopsis result from a single amino acid change in the conserved domain II of the Aux/IAA protein IAA17. Here, we show that the biochemical effect of this gain-of-function mutation is to increase the half-life of the iaa17/axr3-1 protein by sevenfold. Intragenic mutations that suppress the iaa17/axr3-1 phenotype have been described. The iaa17/axr3-1R3 revertant contains a second site mutation in domain I and the iaa17/axr3-1R2 revertant contains a second site mutation in domain III. Transient expression assays show that the mutant forms of IAA17/AXR3 retain the ability to accumulate in the nucleus. Using the yeast two hybrid system, we show that the iaa17/axr3-1 mutation does not affect homodimerization. However, the iaa17/axr3-1 revertants counteract the increased levels of iaa17/axr3-1 protein by decreasing the capacity of the mutant protein to homodimerize. Interestingly, heterodimerization of the revertant forms of IAA17/AXR3 with IAA3/SHY2, another Aux/IAA protein, and ARF1 or ARF5/MP proteins is affected only by changes in domain III. Collectively, the results provide biochemical evidence that the revertant mutations in the IAA17/AXR3 gene affect the capacity of the encoded protein to dimerize with itself, other members of the Aux/IAA protein family, and members of the ARF protein family. By extension, these findings may provide insight into the effects of analogous mutations in other members of the Aux/IAA gene family.  相似文献   

20.
Gene dosage and gene duplicability   总被引:2,自引:0,他引:2       下载免费PDF全文
Qian W  Zhang J 《Genetics》2008,179(4):2319-2324
The evolutionary process leading to the fixation of newly duplicated genes is not well understood. It was recently proposed that the fixation of duplicate genes is frequently driven by positive selection for increased gene dosage (i.e., the gene dosage hypothesis), because haploinsufficient genes were reported to have more paralogs than haplosufficient genes in the human genome. However, the previous analysis incorrectly assumed that the presence of dominant abnormal alleles of a human gene means that the gene is haploinsufficient, ignoring the fact that many dominant abnormal alleles arise from gain-of-function mutations. Here we show in both humans and yeast that haploinsufficient genes generally do not duplicate more frequently than haplosufficient genes. Yeast haploinsufficient genes do exhibit enhanced retention after whole-genome duplication compared to haplosufficient genes if they encode members of stable protein complexes, but the same phenomenon is absent if the genes do not encode protein complex members, suggesting that the dosage balance effect rather than the dosage effect is the underlying cause of the phenomenon. On the basis of these and other results, we conclude that selection for higher gene dosage does not play a major role in driving the fixation of duplication genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号