首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To test whether the impact of an enriched-CO2 environment on the growth and biomass allocation of first-season Quercus suber L. seedlings can modify the drought response under shade or sun conditions, seedlings were grown in pots at two CO2 concentrations × two watering regimes × two irradiances. Compared to CO2, light and water treatment had greater effects on all morphological traits measured (height, stem diameter, number of leaves, leaf area, biomass fractions). Cork oak showed particularly large increases in biomass in response to elevated CO2 under low-watered (W−) and high-illuminated conditions (L+). Allocation shifted from shoot to root under increasing irradiance (L+), but was not affected by CO2. Changes in allocation related to water limitation were only modest, and changed over time. Relative growth rate (RGR) and net assimilation rate (NAR) were significantly greatest in the L+/W+ treatment for both CO2 concentrations. Changes in RGR were mainly due to NAR. Growth responses to increased light, water or CO2 were strongest with light, medium with water availability and smallest for CO2, in terms of RGR. The rise in NAR for light and water treatments was counterbalanced by a decrease in SLA (specific leaf area) and LMF (leaf mass fraction). Results suggest that elevated CO2 caused cork oak seedlings to improve their performance in dry and high light environments to a greater extent than in well-irrigated and low light ones, thus ameliorating the effects of soil water stress and high light loads on growth.  相似文献   

2.
以百日草‘芳菲1号’为试材,研究不同水分胁迫下烯效唑(S3307)对其幼苗生长、光合特性及叶解剖结构的影响,以明确S3307对百日草的抗旱作用及其机理。结果显示:(1)在水分胁迫下,百日草的生长均受到不同程度的抑制,叶绿素含量显著降低,光合作用受到抑制,叶解剖结构有所变化。(2)S3307处理后,均能够显著降低所对应的不同程度水分胁迫下百日草的株高,显著增加茎粗、叶面积、叶片厚度、栅栏组织厚度和根冠比,显著增加叶绿素含量,提高百日草的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)。研究表明,S3307能够提高百日草的抗旱性,而且在轻度和中度水分胁迫下Pn的下降主要是由气孔因素引起,而在重度水分胁迫下光合速率的下降是由非气孔因素引起的。  相似文献   

3.
采用人工气候室控制环境条件,研究了高温(30℃和40℃)对印楝(Azadirachta indica A.Juss.)、木豆[Cajanus cajan(Linn.)Huth]、赤桉(Eucalyptus camaldulensis Dehn.)、蓝桉(E.globulus Labillardiere)、柠檬桉(E.citriodoraHook.)、大叶相思(Acacia auriculiformis A.Cunn.)和麻风树(Jatropha curcas Linn.)7个干热河谷植被恢复树种幼苗叶片光合参数的影响,以及低湿条件对麻风树幼苗叶片光合参数的影响,并对高温及低湿条件下各树种叶片光合参数与叶片含水量的关系进行了探讨。结果表明:在高温条件下,供试树种叶片的净光合速率(Pn)和Fv/Fm值均随叶片含水量的提高逐渐增加,但在40℃条件下各树种的Pn以及刚nn值均明显降低,表明叶片含水量高有利于各树种叶片Pn和n/Fm的提高,而40℃高温则对其Pn和Fv/Frn有明显抑制作用。在非干旱条件下,高温对各树种幼苗的Pn、气孔导度(Gs)、胞间c0:浓度(ci)和蒸腾速率(Tr)均有不同程度影响。在40℃条件下,供试树种中印楝和赤桉幼苗的Pn降幅最小;大叶相思、蓝桉和木豆幼苗的Gs明显增加;各树种幼苗的ci均明显提高;除印楝外,其他6个树种幼苗的Tr明显加剧且叶片水分利用效率降低。在叶片含水量较高的状况下,供试7个树种中印楝和赤桉幼苗的FV/Fm值受高温的影响较小。在空气相对湿度20%的条件下,麻风树幼苗的Pn、Cs、ci及Tr均明显降低,且均随叶片含水量的提高而增加,表明叶片含水量下降是麻风树幼苗光合作用减弱的重要影响因素。研究结果表明:干热河谷地区的高温引起的植物光合限制以非气孔因素为主导;在供试的7个树种中,印楝和赤桉对干热河谷高温干旱生境的适应或忍耐能力较强。  相似文献   

4.
杨莹  王传华  刘艳红 《生态学报》2010,30(22):6082-6090
通过设置4个光照梯度(25%、12%、6%和3%自然光)模拟鄂东南低山丘陵地区落叶阔叶林林下的光环境,研究了2种耐荫性不同的树种幼苗--麻栎(Quercus acutissima)和化香(Platycarya strobilacea)不同光强下的存活率、光合特性、生长和生物量分配,探讨了低光环境中耐荫性不同的树种幼苗维持自身碳平衡的机制和权衡"存活-生长"选择的生活史策略。结果表明:(1)低光下的2个树种幼苗的生长、光合特性和生物量分配具有显著性差异。(2)各个光照梯度下麻栎幼苗都生长良好,存活率保持在35%以上,而化香幼苗遭遇高的死亡率,80d后3%和6%自然光下的幼苗全部死亡;低光环境中麻栎幼苗比化香幼苗具有更大的表观光量子(AQY)和最大净光合效率(Pmax),更低的光补偿点(LCP)和暗呼吸效率(Rd),即耐荫性较强的麻栎幼苗比耐荫性较弱的化香幼苗具有更高的低光碳同化率和碳捕获能力。(3)2个树种幼苗的成活率与RGR呈负相关关系,各个光照梯度下耐荫性较弱的化香幼苗的相对生长率(RGR)显著高于耐荫性较强的麻栎幼苗,而两个树种幼苗的净同化率(NAR)无明显差异。相对于麻栎幼苗较高的根生物量比(RMR),化香幼苗将更多的生物量分配给叶部,因而具有较高的叶生物量比(LMR)、叶面积比(LAR)和比叶面积(SLA)。不同耐荫性的幼苗生长及生物量分配方式的差异是植物"存活-生长"权衡后的结果,耐荫性弱的化香幼苗具有较高的生长潜力和较弱的自我保护能力,而耐荫性强的麻栎幼苗具有更高的低光碳储量,能够维持更好的低光碳平衡,具有竞争优势。  相似文献   

5.
干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应   总被引:1,自引:0,他引:1  
采用盆栽控水设置4种水分梯度,研究1年生石灰花楸幼苗叶片解剖结构和光合生理指标对干旱胁迫的响应。结果显示:(1)干旱胁迫下,石灰花楸叶片逐渐变薄,轻度和中度胁迫下栅海比显著升高,而重度胁迫下显著降低。(2)干旱胁迫抑制了光合色素合成,降低了叶绿素和类胡萝卜素含量,同时使叶绿素a/b和叶绿素/类胡萝卜素值升高。(3)随干旱程度加剧,净光合速率、蒸腾速率和气孔导度日变化整体下降,胞间CO2浓度整体上升,光合限制以非气孔因素为主。研究表明,石灰花楸能根据水分亏缺程度调整叶片结构和光合生理特征以维持生存和生长,具有较强的耐旱性。  相似文献   

6.
耐冬山茶作为第三纪孑遗植物,是山茶自然分布最北缘的种群,具有丰富的形态特征与独特的遗传特性.以野生耐冬山茶幼苗为对象,设置2个光照梯度(全光照的65%、15%)、3个干旱梯度(田间持水量的75%、50%、25%),研究耐冬山茶在不同光照、水分条件下生理生态学响应机制,验证现存的4个理论假设是否能够解释耐冬山茶幼苗对遮荫与干旱的响应.结果表明:15%全光照限制了耐冬山茶幼苗的生长.与65%全光照相比,15%全光照使叶片的净光合速率、蒸腾速率和叶绿素含量下降,最大降幅分别为63.3%、82.9%和17.5%,显著提高了叶片的比叶面积、叶片含水量和PSⅡ最大光化学效率,最大分别提高了60.3%、8.3%和6.4%.干旱抑制耐冬山茶的生长,使株高、基径下降.随着干旱胁迫的加重,植株叶片的净光合速率、蒸腾速率和气孔导度显著降低,最小值分别为0.83μmol·m-2·s-1、0.30μmol·m-2·s-1和11.56 mmol·m-2·s-1.随干旱胁迫的加重,过氧化物酶和过氧化氢酶含量总体呈下降趋势,而丙二醛和脯氨酸含量显著上升.15%全光照缓解了干旱对耐冬山茶幼苗的消极影响,遮荫与干旱对耐冬山茶幼苗的交互作用符合"促进理论".耐冬山茶幼苗能够通过多种调节机制适应环境变化,且能适应较大的光照和水分范围.此外,通过改善耐冬山茶生长的光照和水分条件,为其提供理想的生长环境,可以扩大其园林应用.  相似文献   

7.
The aim of the study was to assess the potential importance for Mediterranean plants of trade-offs in the response to irradiance and water availability at the regeneration stage. Survival and growth patterns across an experimentally imposed irradiance gradient (1, 6, 20 and 100% sunlight) were studied in seedlings of eight Mediterranean woody species, together with the impact of a simulated summer drought. We found evidence of some of the trade-offs previously reported for non-Mediterranean plant communities, such as between survival in the shade and relative growth rate (RGR) at high light, but no evidence for others, such as between shade and drought tolerances. The impact of drought on survival and RGR was stronger in high light than in deep shade. The observed species-specific differences in performance provide a mechanistic basis for niche differentiation at the regeneration stage, contributing to possible explanations of species coexistence in Mediterranean ecosystems.  相似文献   

8.
以滇润楠一年生实生苗为试验材料,研究在良好水分条件(土壤含水量为70%~75%田间持水量)、轻度干旱胁迫及重度干旱胁迫处理下(50%~55%和30%~35%田间持水量)进行外源脱落酸(ABA)喷施对其生长及生理特性的影响。结果表明: 干旱胁迫使得滇润楠幼苗叶片的相对含水量、株高和生物量显著下降,净光合速率及叶绿素荧光参数(PSⅡ最大光化学效率,Fv/Fm)有不同程度的下降,而根冠比、膜脂过氧化产物丙二醛(MDA)含量显著增加。外源ABA的喷施可提高干旱胁迫下滇润楠幼苗的适应性,尤其是重度干旱下,外源ABA显著提高了叶片相对含水量21.0%,同时增加了植株株高和生物量的累积,提高了根冠比,为良好水分条件的2.1倍;减少了干旱下膜脂过氧化产物MDA的累积,提高了抗氧化酶过氧化氢酶、超氧化物岐化酶的活性,显著增加了脯氨酸的含量,为良好水分条件的7.7倍。外源ABA的喷施显著缓解了干旱胁迫对植株光合器官的不利影响,减少干旱引起的叶片净光合速率及气孔导度的下降,并且减轻了PSⅡ受到干旱的伤害程度,重度干旱下喷施ABA的植株的Fv/Fm显著高于未喷施ABA的植株。外源ABA的喷施可以减轻干旱对滇润楠植株的伤害,提高其抗旱性。  相似文献   

9.
苗圃科学施氮(N)作为提高苗木N贮存水平与质量的核心手段,能否提高干旱立地苗木造林效果仍存在争议;N贮存水平与干旱如何协同作用影响叶片光合N分配及苗木生物量积累尚不明确。阐明上述问题,能够为干旱立地下的森林植被恢复以及造林苗木科学精准施N提供科学依据。选择栓皮栎(Quercus variabilis Blume)为研究对象,对一年生苗木设置2个苗圃木质化期N加载水平(0、24 mg N/株),翌年春苗木移栽后设置2个灌溉水平(85%、40%田间持水量),取样测定苗木生物量、叶片N、叶绿素与脯氨酸水平、以及气体交换参数,计算光合N分配及光合N利用效率(PNUE)。结果表明,叶片发育完成后,干旱抑制N向光合系统分配,但N加载处理提高了干旱下的光合N含量,从而在一定程度上抵消干旱对生物量积累的抑制;无N加载苗木则向光合系统投入更少的N,而提高脯氨酸水平,生物量积累受抑制更为显著。无N加载苗木在遭受干旱后将N向羧化组分分配,而N加载苗木遭遇干旱后则显著抑制叶片将N向羧化系统以及电子传递系统分配,捕光组分N的分配则不受植物体内N贮存或外部水分状况的影响,栓皮栎苗木通过调整不同功能组分光合N含量和...  相似文献   

10.
The ability of silver fir ( Abies alba Mill.) to acclimate to different levels of irradiance was tested with 3-year-old seedlings, grown for 2 years in a nursery close to Nancy (eastern France) under 100, 48, 18 and 8% of incident irradiance (neutral shade nets). Growth, total nutrients in needles, maximal carboxylation rate ( V cmax), maximal light driven electron flow ( J max) and the relative amount of nitrogen allocated to photosynthetic processes (carboxylation, bioenergetics, light harvesting) were investigated. The sensitivity to drought stress was assessed among the phenotypes resulting from light acclimation. Leader-shoot and branch elongation were greatest under 18% irradiance. Total seedling biomass, root-to-total biomass ratio, total leaf area, leaf mass-to-area ratio and needle-area based nitrogen content responded positively to increasing irradiance while leaf area ratio decreased. Both V cmax and J max increased by a factor of 1.6 and 1.8, respectively, from the lowest to the highest irradiance but the ratio J max/ V cmax remained stable. All these parameters, expressed on a projected needle area basis, remained within the lower range of values measured for broadleaved trees. Relative allocation of needle N to the different components of the photosynthetic apparatus was very low: 12, 3 and 7% of total nitrogen were invested in carboxylation, bioenergetics and light harvesting, respectively. The relative allocation of nitrogen to carboxylation and bioenergetics remained stable while that to light harvesting decreased with increasing irradiance. During drought, seedlings pre-acclimated to shade closed their stomata at higher predawn needle water potential than those which were grown under higher irradiance. Critical temperature for PSII photochemistry in needles was unaffected by irradiance and was close to 47°C. Drought significantly increased the critical temperature up to 51°C. In general, the amplitude of responses of silver fir to changing irradiance (phenotypic plasticity) was smaller than that recorded in broadleaved species.  相似文献   

11.
The effects of exogenous foliar glycine betaine (GB) and abscisic acid (ABA) on papaya responses to water stress were investigated under distinct water regimes. Papaya seedlings (Carica papaya L. cultivar “BH-65”) were pretreated with GB or ABA and subsequently subjected to consecutive periods of drought, rehydration, and a second period of drought conditions. Results indicated that water stress induced ABA, jasmonic acid (JA), and proline accumulation but did not modify malondialdehyde (MDA) concentration. In addition, water deprivation reduced photosynthetic rate, stomatal conductance, relative water content (RWC), leaf fresh weight, and increased leaf abscission. GB applied prior to drought imposition decreased the impact of water stress on ABA, JA, proline accumulation, leaf water status, growth, and photosynthetic performance. However, ABA-pretreated plants did not show alteration of most of these parameters under water stress conditions when compared with non-pretreated plants except a clear induction of JA accumulation. Taken together, the data suggest that GB may modulate ABA, JA, and proline accumulation through the control of stomatal movement and the high availability of compatible solutes, leading to improvement of leaf water status, growth, and photosynthetic machinery function. In contrast, exogenous ABA did not stimulate papaya physiological responses under drought, but interestingly ABA in combination with drought could induce progressive JA synthesis, unlike drought alone, which induces a transitory JA increase and may trigger endogenous ABA accumulation. The data also suggest that irrespective of the pretreatments, papaya did not suffer oxidative damage.  相似文献   

12.
In order to investigate the factors causing fast growth of sprouts ofPasania edulis, photosynthetic activity and water relation characteristics of lower (mature) leaves and upper (expanding) leaves of the sprouts were compared with those of seedlings and adult trees ofP. edulis. Apparent quantum yield was generally low. Maximum photosynthetic rate was highest in the lower leaves of sprouts. Stomatal frequency was higher in sprout leaves than in seedling leaves. Osmotic potential at the water saturation point and water potential at the turgor loss point, in leaves, were higher in sprouts than in seedlings and adult trees. Symplasmic water content per unit leaf area was higher in sprouts than in seedlings. These water relation parameters in leaves indicated that sprout leaves are superior in maintaining cell turgor against water loss, but are not tolerant to water stress. In field measurements, sprout leaves showed higher stomatal conductance and transpiration rates. These results indicated that sprout leaves fully realized their high potential productivity even under field conditions. The leaf specific conductance, from the soil to the leaf, was higher in sprouts than in seedlings. Large and deep root systems of the original stumps of the sprouts may be attributed to the high leaf specific conductance.  相似文献   

13.
Jiang CD  Wang X  Gao HY  Shi L  Chow WS 《Plant physiology》2011,155(3):1416-1424
Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.  相似文献   

14.
The epiphytic growth habit in many Ficus species during their juvenile stages has commonly been hypothesized to be an adaptation for avoiding deep shade in the forest understory, but this has never been tested experimentally. We examined growth and ecophysiology in seedlings of three hemiepiphytic (Hs) and three non‐hemiepiphytic (NHs) Ficus species grown under different irradiance levels. Both Hs and NHs exhibited characteristics of high light requiring species, such as high plasticity to growth irradiance and relatively high maximum photosynthetic assimilation rates. Diurnal measurements of leaf gas exchange showed that Hs have much shorter active photosynthetic periods than NHs; moreover, leaves of Hs have lower xylem hydraulic conductivity but stronger drought tolerance as indicated by much lower rates of leaf diebacks during the drought treatment. Seedlings of NHs had 3.3‐ and 13.3‐fold greater height and biomass than those of Hs species after growing in the nursery for 5 months, indicating a trade‐off between growth and drought tolerance due to the conflicting requirements for xylem conductivity and cavitation resistance. This study does not support the shade‐avoidance hypothesis; rather, it suggests that the canopy regeneration in Hs is an adaptation to avoid alternative terrestrial growth‐related risks imposed to tiny Ficus seedlings. The NHs with terrestrial regeneration reduce these risks by having an initial burst of growth to rapidly gain relatively large seedling sizes, while in Hs seedlings more conservative water use and greater drought tolerance for surviving the canopy environment are intrinsically associated with slow growth.  相似文献   

15.
植物的叶片结构和功能性状受到自身、环境和系统发育的影响。该研究选取西双版纳20 hm2热带雨林动态监测大样地内18种分布格局不同的大戟科植物, 测量了幼树叶片的解剖结构、水分关系特征、最大光合能力和暗呼吸, 主要探讨了叶片结构对植物耐旱性和光合能力的影响, 耐旱性和光合能力之间的权衡关系, 以及环境水分条件对植物功能性状相关性的影响。结果表明: 1)生境内植物表现出一定的结构和功能的趋同性, 分布在山脊和山坡的种比沟谷种具有更强的耐失水能力; 2)去除了系统发育的影响后, 一些关键性状(特别是叶片密度和膨压丧失点时的水势、饱和渗透势等)之间存在跨生境尺度上的相关关系, 植物叶片结构同时影响了植物的耐失水能力和光合能力, 植物叶片自身的结构限制导致了植物的耐旱性(高的叶片密度、比叶质量)和光合能力(低的叶片密度、比叶质量)存在反向进化关系; 3)如果研究的植物类群亲缘关系较近, 传统的Pearson相关分析不能很好地揭示其性状间的相关关系, 因而必须采用系统发育独立对照差作相关分析。大戟科植物的结构和功能在水分梯度和光梯度上的生态位分化也从功能性状的角度为热带季雨林能维持高生物多样性, 保持植物物种长期共存提供了一个可能的解释。  相似文献   

16.
To better understand the requirement of light and soil water conditions in the invasion sites of two invasive weeds, Mikania micrantha and Chromolaena odorata, we investigated their structural and physiological traits in response to nine combined treatments of light [full, medium and low irradiance (LI)] and soil water (full, medium and low field water content) conditions in three glasshouses. Under the same light conditions, most variables for both species did not vary significantly among different water treatments. Irrespective of water treatment, both species showed significant decreases in maximum light saturated photosynthetic rate (P max), photosynthetic nitrogen-use efficiency, and relative growth rate under LI relative to full irradiance; specific leaf area, however, increased significantly from full to LI though leaf area decreased significantly, indicating that limited light availability under extreme shade was the critical factor restricting the growth of both species. Our results also indicated that M. micrantha performed best under a high light and full soil water combination, while C. odorata was more efficient in growth under a high light and medium soil water combination.  相似文献   

17.
干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究   总被引:1,自引:0,他引:1  
张亚敏  马克明  李芳兰  曲来叶 《生态学报》2016,36(11):3329-3337
采用温室水分控制试验,在干旱胁迫条件下,定量化研究优势丛枝菌根真菌(AMF)影响优势乡土植物小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗生长的机理,主要通过研究干旱胁迫条件下摩西球囊霉菌(Funneliformis mosseae)与小马鞍羊蹄甲的共生关系,阐明AMF在植物生长初期的作用。结果表明,干旱胁迫条件下,摩西球囊霉菌能够很好地侵染幼苗,侵染率高达89%—97%,并且不受水分条件影响。接种的幼苗最大光合速率、水分利用效率随着干旱胁迫程度从重度到轻度(水分从低到高)逐渐增大,相反地,叶片脯氨酸含量逐渐减小。接种显著地促进幼苗株高、叶片数、叶面积、根长、根面积等生长指标,提高幼苗各部分生物量、地上地下磷(P)含量。当含水量为60%田间持水量时,AMF促进小马鞍羊蹄甲幼苗吸收P的效果最好。接种还显著影响幼苗的生物量分配,在重度干旱胁迫时影响P分配,水分条件也显著影响幼苗的生物量分配。此外,接种和水分的交互作用对叶生物量、总生物量、生长指标以及地上部氮(N)总量影响显著。结果表明干旱胁迫条件下菌根效应显著,并在干旱条件下显著促进了小马鞍羊蹄甲幼苗的生长,这为进一步干旱河谷植被恢复提供了理论依据。  相似文献   

18.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

19.
The olive tree (Olea europaea L.) is commonly grown in the Mediterranean area, where it is adapted to resist periods characterized by severe drought and high irradiance levels. Photosynthetic efficiency (in terms of Fv/Fm and ΦPSII), photochemical (qP) and nonphotochemical quenching (NPQ) were determined in two-year-old olive plants (cultivars Coratina and Biancolilla) grown under two different light levels (exposed plants, EP, and shaded plants, SP) during a 21-day controlled water deficit. After reaching the maximum level of drought stress, plants were rewatered for 23 days. During the experimental period, measurements of gas exchange and chlorophyll (Chl) fluorescence were carried out to study the photosynthetic performance of olive plants. The synergical effect of drought stress and high irradiance levels caused a reduction of gas exchange and photosynthetic efficiency and these decreases were more marked in EP. EP showed a higher degree of photoinhibition, a higher NPQ and a lower qP if compared to SP. Coratina was more sensitive to high light and drought stress but also showed a slower recovery during rewatering, whereas Biancolilla showed a less marked photosynthesis depression during drought and a considerable resilience during rewatering. The results confirm that photoinhibition due to high light intensity and water deficit can be an important factor that affects photosynthetic productivity in this species.  相似文献   

20.
喜光榕树和耐荫榕树光适应机制的差异   总被引:11,自引:0,他引:11  
100%和36%光强下生长的喜光的斜叶榕的光合能力高于耐荫的假斜叶榕,而热耗散能力与之相似,说明强光下斜叶榕主要通过光合作用利用光能和热耗散、假斜叶榕主要通过热耗散防御光破坏.100%光强下生长的两种榕树的日间光抑制程度相似,但叶表光强相同情况下各光强下生长的假斜叶榕的光抑制均比斜叶榕严重.100%光强下假斜叶榕叶片悬挂角大于斜叶榕,导致日间叶表光强低于斜叶榕,这可能是两种榕树日间光抑制程度相似的原因,表明叶片悬挂角的适应变化对假斜叶榕有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号