首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deinococcus species exhibit an extraordinary ability to withstand ionizing radiation (IR). Most of the studies on radiation resistance have been carried out with exponential phase cells. The studies on radiation resistance of Deinococcus radiodurans R1 with respect to different phases of growth showed that late stationary phase cells of D. radiodurans R1 were fourfold more sensitive to IR and heat as compared with exponential or early stationary phase cells. The increased sensitivity of D. radiodurans R1 to IR in the late stationary phase was not due to a decrease in the intracellular Mn/Fe ratio or an increase in the level of oxidative protein damage. The resistance to IR was restored when late stationary phase cells were incubated for 15 min in fresh medium before irradiation, indicating that replenishment of exhausted nutrients restored the metabolic capability of the cells to repair DNA damage. These observations suggest that stress tolerance mechanisms in D. radiodurans R1 differ from established paradigms.  相似文献   

2.
3.
Cr(VI) reduction was observed during tests with Shewanella oneidensis MR-1 (previously named S. putrefaciens MR-1) while being grown with nitrate or fumarate as electron acceptor and lactate as electron donor. From the onset of anoxic growth on fumarate, we measured a gradual and progressive increase in the specific Cr(VI) reduction rate with incubation time until a maximum was reached at late exponential/early stationary phase. Under denitrifying conditions, the specific Cr(VI) reduction rate was inhibited by nitrite, which is produced during nitrate reduction. However, once nitrite was consumed, the specific reduction rate increased until a maximum was reached, again during the late exponential/early stationary phase. Thus, under both fumarate- and nitrate-reducing conditions, an increase in the specific Cr(VI) reduction rate was observed as the microorganisms transition from oxic to anoxic growth conditions, presumably as a result of induction of enzyme systems capable of reducing Cr(VI). Although Cr(VI) reduction has been studied in MR-1 and in other facultative bacteria under both oxic and anoxic conditions, a transition in specific reduction rates based on physiological conditions during growth is a novel finding. Such physiological responses provide information required for optimizing the operation of in situ systems for remediating groundwater contaminated with heavy metals and radionuclides, especially those that are characterized by temporal variations in oxygen content. Moreover, such information may point the way to a better understanding of the cellular processes used by soil bacteria to accomplish Cr(VI) reduction.  相似文献   

4.
The lipopolysaccharide (LPS) from Rhizobium trifolii 0403 was isolated at different stages of growth and was examined for its (i) ability to bind a white clover lectin (trifoliin A), (ii) immunochemical properties, and (iii) composition. There was significantly more binding of trifoliin A to purified LPS and cells in the early stationary phase than to cells in the exponential phase. Immunofluorescence and enzyme-linked immunosorbent assays indicated that new antigenic determinants of the LPS appeared for brief periods on cells at the end of the lag phase and again at the beginning of the stationary phase. These new antigens were not detected on cells in midexponential or late stationary phase. Monovalent fragments of immunoglobulin G antibodies raised against the unique antigenic determinants in the LPS competitively blocked the binding of trifoliin A to cells in the early stationary phase. Gas chromatographic analysis showed that the relative quantity of several glycosyl components in the LPS increased as the culture advanced from the midexponential to the early stationary phase. In addition, LPS from cells in the early stationary phase had a higher aggregate molecular weight. Quinovosamine (2-amino-2,6-dideoxyglucose) was identified by combined gas chromatography-mass spectrometry as a sugar component of the LPS which had not been previously reported. D-Quinovosamine, N-acetyl-D-quinovosamine, and its n-propyl-beta-glycoside were effective hapten sugars which inhibited the binding of trifoliin A, anti-clover root antibody, and homologous antibody to these new determinants in the LPS. White clover plants had more infected root hairs after incubation with an inoculum of cells in the early stationary phase than after incubation with cells in the midexponential phase. The profound influence of the growth phase on the composition of lectin-binding polysaccharides of Rhizobium may be a major underlying cause of conflicting data among laboratories testing the lectin-recognition hypothesis. In addition, these chemical modifications may reflect mechanisms which regulate Rhizobium-root hair recognition in this nitrogen-fixing symbiosis.  相似文献   

5.
Abstract Polyhydroxyalkanoate (PHA) accumulation and the morphology of PHA inclusion bodies were examined in Bacillus megaterium , strain 11561. Our results show a pattern of PHA degradation and synthesis, and of inclusion body growth and proliferation not previously reported. Degradation of PHA in the lag phase was followed by synthesis of PHA at an accelerating rate during exponential growth. PHA accumulation reached a maximum rate at late exponential/early stationary phase and the rate declined to a lower steady state in the stationary phase. During exponential and early stationary phase growth, PHA had a faster doubling rate than that of total cell biomass (w/w). Results of the morphology studies suggest that PHA inclusion bodies proliferated by budding and reached maximum size by early stationary phase growth. This pattern was observed in minimal and in rich media.  相似文献   

6.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

7.
BACKGROUND AND AIMS: Cryopreservation is a practical method of preserving plant cell cultures and their genetic integrity. It has long been believed that cryopreservation of plant cell cultures is best performed with cells at the late lag or early exponential growth phase. At these stages the cells are small and non-vacuolated. This belief was based on studies using conventional slow prefreezing protocols and survival determined with fluorescein diacetate staining or 2,3,5-triphenyltetrazolium chloride assays. This classical issue was revisited here to determine the optimum growth phase for cryopreserving a bromegrass (Bromus inermis) suspension culture using more recently developed protocols and regrowth assays for determination of survival. METHODS: Cells at different growth phases were cryopreserved using three protocols: slow prefreezing, rapid prefreezing and vitrification. Stage-dependent trends in cell osmolarity, water content and tolerance to freezing, heat and salt stresses were also determined. In all cases survival was assayed by regrowth of cells following the treatments. KEY RESULTS: Slow prefreezing and rapid prefreezing protocols resulted in higher cell survival compared with the vitrification method. For all the protocols used, the best regrowth was obtained using cells in the late exponential or early stationary phase, whereas lowest survival was obtained for cells in the late lag or early exponential phase. Cells at the late exponential phase were characterized by high water content and high osmolarity and were most tolerant to freezing, heat and salt stresses, whereas cells at the early exponential phase, characterized by low water content and low osmolarity, were least tolerant. CONCLUSIONS: The results are contrary to the classical concept which utilizes cells in the late lag or early exponential growth phase for cryopreservation. The optimal growth phase for cryopreservation may depend upon the species or cell culture being cryopreserved and requires re-investigation for each cell culture. Stage-dependent survival following cryopreservation was proportionally correlated with the levels of abiotic stress tolerance in bromegrass cells.  相似文献   

8.
When chloramphenicol was added to a culture of Bacillus subtilis in early exponential growth, microscopic observation of cells stained by 4',6-diamidino-2-phenylindole showed nucleoids that had changed in appearance from irregular spheres and dumbbells to large, brightly stained spheres and ovals. In contrast, the addition of chloramphenicol to cultures in mid- and late exponential growth showed cells with elongated nucleoids whose frequency and length increased as the culture approached stationary phase. The kinetics of nucleoid elongation after the addition of chloramphenicol to exponential-phase cultures was complex. Immediately after treatment, the rate of nucleoid elongation was very rapid. The nucleoid then elongated steadily for about 4 min, after which the rate of elongation decreased considerably. Nucleoids of cells treated with 6-(p-hydroxyphenylazo)-uracil (an inhibitor of DNA synthesis) exhibited the immediate rapid elongation upon chloramphenicol treatment but not the subsequent changes. These observations suggest that axial filament formation during stationary phase (stage I of sporulation) in the absence of chloramphenicol results from changes in nucleoid structure that are initiated earlier, during exponential growth.  相似文献   

9.
Log phase Bacillus subtilis cells lacking the mscL gene encoding the mechanosensitive (MS) channel of large conductance are sensitive to an osmotic downshock ≥0.5 M. However, B. subtilis mscL cells develop osmotic downshock resistance in late log and early stationary phase growth that is partially dependent on three likely MS channel proteins of small conductance (MscS), YfkC, YhdY, and YkuT. Bacillus subtilis MS proteins were fused with green fluorescent protein (GFP) at their C termini; at least the MscL-, YfkC-, and YkuT-GFP fusions were functional and overexpression of YkuT-GFP, or YkuT alone abolished log phase mscL cells’ osmotic downshock sensitivity. Western blot analysis found high levels of MscL-GFP in early exponential phase cells with levels subsequently decreasing greatly. MscS-GFP proteins were present in exponential phase cells, but again disappeared almost completely in stationary phase cells and these proteins were not detected in spores. Western blot analyses further showed that MS-GFP proteins were associated with the plasma membrane, as expected. Fluorescence microscopy confirmed the localization of MscL-GFP and YhdY-GFP to the plasma membrane, with non-uniform distribution of these proteins along this membrane consistent with but by no means proving that these proteins are present in a helical array.  相似文献   

10.
Summary During the stationary growth phase, the phospholipids of Thiobacillus neapolitanus consisted of phosphatidyl glycerol (PG), diphosphatidyl glycerol (DPG), phosphatidyl-N-monomethylethanolamine (PME) and phosphatidyl ethanolamine (PE) in increasing amounts. In general, the phospholipids increased to a maximum concentration during the stationary phase and then decreased in concentration. Individually, PG and PE increased to a maximum in late lag or early exponential phase and then decreased in concentration. DPG and PME increased during the transition between the exponential and the stationary phase and reached a maximum concentration in the stationary phase. In older cultures, a quantitative interconversion between PG and DPG and PE and PME was observed. A lyso-phospholipid compound also appeared in the late stationary phase.The phospholipid composition of the culture supernatant fluid was essentially similar to that of the cells at all stages of growth. No excessive secretion of these products into the medium was observed at any growth stage of the culture.Abbreviations used PG Phosphatidyl glycerol - DPG Diphosphatidyl glycerol - PME Phosphatidyl-N-monomethylethanolamine - PE Phosphatidyl ethanolamine - GPGPG Glycerophosphoryl glycerophosphoryl glycerol - GPG Glycerophosphoryl glycerol - GPE Glycerophosphoryl ethanolamine - GPME Glycerophosphoryl-N-monomethylethanolamine  相似文献   

11.
12.
13.
The behavior of lag and exponential growth phase L5178Y mouse leukemic cells under normal and prolonged lag phase conditions with respect to partition in aqueous dextran — polyethylene glycol polymer systems has been studied. ‘Backculture’ of early stationary cells into fresh growth medium is accompanied by a decrease in partition ratio from 0.52 to 0.11. The partition ratio remains depressed for a time considerably longer than the duration of lag phase but rises rapidly and returns to its former value as the cells reach late exponential/early stationary phase. If lag phase is prolonged, the time for which the partition ratio remains depressed is also prolonged. In the exponential phase following a prolonged lag phase, the partition ratio rises at a rate slower than during a normal exponential phase and does not reach the same magnitude for the same position in the cycle. Net negative surface charge as measured by particle microelectrophoresis does not change appreciably throughout the growth cycle. The results suggest that the sequence of events at the cell surface on a populational basis which contribute to the partitioning behavior is possibly predetermined or programmed at the time of transfer into fresh medium. The results further substantiate the technique of aqueous polymer partitioning as being the most sensitive method available for monitoring subtle changes in plasma membrane properties during the cell growth cycle.  相似文献   

14.
Summary Morphological changes in the central vacuole during the growth in in vitro culture ofBlastocystis hominis were investigated by light and electron microscopy. Most cells in log phase and an early stationary phase showed a positive staining reaction in the central vacuole with PAS or Sudan black B stain, whereas cells in late stationary phase showed few positive reactions. Electron microscopic observations revealed that 95% ofB. hominis cells in log phase and 50% of cells in early stationary phase, had a substantial accumulation of electron-dense material in the central vacuole. In contrast, only 25% of the organisms in late stationary phase had an electron-dense central vacuole, while more than 50% of cells had an electron-lucent central vacuole. These results indicate thatB. hominis accumulated carbohydrates and lipids in the central vacuole during cell growth and that the organism probably consumed these metabolic substances during stationary growth. Therefore, it is strongly suggested that the central vacuole is an important organelle for storage of metabolic substances, such as carbohydrates and lipids, required for cell growth.Abbreviations PBS phosphate-buffered saline - PAS periodic acid-Schiff  相似文献   

15.
16.
Human lung fibroblasts (WI-38) in late exponential phase of growth, in stationary phase after confluency was reached, and at high or low number of population doublings were used to investigate the synthesis of proline and hydroxyproline from glutamate or arginine. Glutamate was from two to five times as effective a precursor as arginine; glutamine did not seem to be involved in these metabolic pathways. Accumulation of protein-bound hydroxyproline in cell layers was observed only after confluency. Confluent cells synthesized more proline from glutamate than did cells in late exponential growth. Conversion of glutamate into intracellular free proline was conducted also to a greater extent in confluent cells at a high number of population doublings. Conversion of glutamate into proline or hydroxyproline in cell-layer protein was not affected significantly by the number of population doublings. Less total protein as well as less hydroxyproline accumulated with cells at a high number of population doublings.  相似文献   

17.
Microbes engage in cooperative behaviours by producing and secreting public goods, the benefits of which are shared among cells, and are therefore susceptible to exploitation by nonproducing cheats. In nature, bacteria are not typically colonizing sterile, rich environments in contrast to laboratory experiments, which involve inoculating sterile culture with few bacterial cells that then race to fill the available niche. Here, we study the potential implications of this difference, using the production of pyoverdin, an iron‐scavenging siderophore that acts as a public good in the bacteria Pseudomonas aeruginosa. We show that (1) nonproducers are able to invade cultures of producers when added at the start of growth or during early exponential growth phase, but not during late exponential or stationary phase; (2) the producer strain does not produce pyoverdin in the late exponential and stationary phases and so is not paying the cost of cooperating during those phases. These results suggest that whether a nonproducing mutant can invade will depend upon when the mutation arises, as well as the population structure, and raise a potential difficulty with the use of antimicrobial treatment strategies that propose to exploit the invasive abilities of cheats.  相似文献   

18.
19.
The time course of the accumulation of triacylglycerols (TAGs) in Rhodococcus opacus PD630 or of TAGs plus polyhydroxyalkanoates (PHA) in Rhodococcus ruber NCIMB 40126 with gluconate or glucose as carbon source, respectively, was studied. In addition, we examined the mobilization of these storage compounds in the absence of a carbon source. R. opacus accumulated TAGs only after the exhaustion of ammonium in the medium, and, with a fixed concentration of the carbon source, the amounts of TAGs in the cells increased with decreasing concentrations of ammonium in the medium. When these cells were incubated in the absence of an additional carbon source, about 90% of these TAGs were mobilized and used as endogenous carbon source, particularly if ammonium was available. R. ruber accumulated a copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate already during the early exponential growth phase, whereas TAGs were synthesized and accumulated mainly during the late exponential and stationary growth phases. In the stationary growth phase, synthesis of TAGs continued, whereas PHA was partially mobilized. In the absence of an additional carbon source but in the presence of ammonium, mobilization of TAGs started first and was then paralleled by the mobilization of PHA, resulting in an approximately 90% and 80% decrease of these storage compounds, respectively. During the accumulation phase, interesting shifts in the composition of the two storage compounds occurred, indicating that the substrates of the PHA synthase and the TAG synthesizing enzymes were provided to varying extents, depending on whether the cells were in the early or late exponential or in the stationary growth phase. Received: 12 January 2000 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

20.
The activity of an ATP-dependent protease, Clp, was examined in Escherichia coli SG1110 (lon-) in various growth phases. The ATP-dependent proteolytic activity (Clp activity) in a crude extract of the cells changed with the growth phase. Cells in the early exponential growth phase showed the lowest activity, but then the activity increased dramatically with cell growth. The highest Clp activity was found in the cells in the late exponential and early stationary phases, however, the activity returned to the original level on prolonged culturing. These changes in Clp activity were closely correlated to the amount of one of the components of Clp, Clp A, which was quantitated immunochemically with antibodies against the Clp A protein. However, the amount of the other component of Clp, Clp P, did not change with the growth phase. These results suggest that the activity of Clp in the cells is regulated by the amount of Clp A in various growth phases. We next examined the effect of the cellular ATP level on Clp activity, because ATP is a cofactor for Clp protease in vitro. The addition of dinitrophenol (DNP) and sodium azide reduced the intracellular concentration of ATP, but had no effect on the Clp activity or the level of the Clp A protein when these drugs were added to the culture at the stationary phase. On the other hand, these drugs elevated both the Clp activity and the Clp A amount in exponentially growing cells, whose cellular ATP level was also reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号