首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current biology : CB》2022,32(21):4719-4726.e4
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

2.
Studies involving the alteration of DNA sequences by modified single-stranded oligonucleotides in vitro and in vivo have revealed potential applications for functional genomics. Repair of a replacement, deletion, or insertion mutation has already been achieved with molecules having lengths between 25 and 74 bases. But, other vector parameters still remain to be explored. Here, the position of the single base in the vector directing the alteration was examined and the optimal site was found to be at or near the center of the vector. If that position is staggered 3' or 5', the frequencies of gene repair in vitro decreases. The potential of a single vector to direct two nucleotide changes at a specific site in a target sequence was also examined. Both targeted bases are corrected together at the same frequency if the sites are separated by three bases, but conversion linkage decreases precipitously when the distance is expanded to 15 and 27 nucleotides, respectively. These results suggest that single oligonucleotides can be used to direct nucleotide exchange at two independent sites, a reaction characteristic that may be useful for many genomics applications.  相似文献   

3.
A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 10(5) copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the T(F) family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.  相似文献   

4.
The ATM and ATR kinases function at the apex of checkpoint signaling pathways. These kinases share significant sequence similarity, phosphorylate many of the same substrates, and have overlapping roles in initiating cell cycle checkpoints. However, they sense DNA damage through distinct mechanisms. ATR primarily senses single stranded DNA (ssDNA) through its interaction with ATRIP, and ATM senses double strand breaks through its interaction with Nbs1. We determined that the N-terminus of ATR contains a domain that binds ATRIP. Attaching this domain to ATM allowed the fusion protein (ATM*) to bind ATRIP and associate with RPA-coated ssDNA. ATM* also gained the ability to localize efficiently to stalled replication forks as well as double strand breaks. Despite having normal kinase activity when tested in vitro and being phosphorylated on S1981 in vivo, ATM* is defective in checkpoint signaling and does not complement cellular deficiencies in either ATM or ATR. These data indicate that the N-terminus of ATR is sufficient to bind ATRIP and to promote localization to sites of replication stress.  相似文献   

5.
The ATR kinase phosphorylates both p53 and Chk1 in response to extreme hypoxia (oxygen concentrations of less than 0.02%). In contrast to ATR, loss of ATM does not affect the phosphorylation of these or other targets in response to hypoxia. However, hypoxia within tumors is often transient and is inevitably followed by reoxygenation. We hypothesized that ATR activity is induced under hypoxic conditions because of growth arrest and ATM activity increases in response to the oxidative stress of reoxygenation. Using the comet assay to detect DNA damage, we find that reoxygenation induced significant amounts of DNA damage. Two ATR/ATM targets, p53 serine 15 and histone H2AX, were both phosphorylated in response to hypoxia in an ATR-dependent manner. These phosphorylations were then maintained in response to reoxygenation-induced DNA damage in an ATM-dependent manner. The reoxygenation-induced p53 serine 15 phosphorylation was inhibited by the addition of N-acetyl-l-cysteine (NAC), indicating that free radical-induced DNA damage was mediated by reactive oxygen species. Taken together these data implicate both ATR and ATM as critical roles in the response of hypoxia and reperfusion in solid tumors.  相似文献   

6.
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.  相似文献   

7.
Transfected linear DNA molecules are substrates for double-strand break (DSB) repair in mammalian cells. The DSB repair process can involve recombination between the transfected DNA molecules, between the transfected molecules and chromosomal DNA, or both. In order to determine whether these different types of repair events are linked, we devised assays enabling us to follow the fate of linear extrachromosomal DNA molecules involved in both interplasmid and chromosome-plasmid recombination, in the presence or absence of a pre-defined chromosomal DSB. Plasmid-based vectors were designed that could either recombine via interplasmid recombination or chromosome-plasmid recombination to produce a functional beta-galactosidase (betagal) fusion gene. By measuring the frequency of betagal+ cells at 36 h post-transfection versus the frequency of betagal+ clones after 14 days, we found that the number of cells containing extrachromosomal recombinant DNA molecules at 36 h (i.e., betagal+), either through interplasmid or chromosome-plasmid recombination, was nearly the same as the number of cells integrating these recombinant molecules. Furthermore, when a predefined DSB was created at a chromosomal site, the extrachromosomal recombinant DNA molecules were shown to integrate preferentially at that site by Southern and fiber-FISH (fluorescence in situ hybridization) analysis. Together these data indicate that the initial recombination event can potentiate or commit extrachromosomal DNA to integration in the genome at the site of a chromosomal DSB. The efficiency at which extrachromosomal recombinant molecules are used as substrates in chromosomal DSB repair suggests extrachromosomal DSB repair can be coupled to the repair of chromosomal DSBs in mammalian cells.  相似文献   

8.
Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5' flaps attached to the ends of the incoming Mu genome, followed by filling the remaining 5 bp gaps at each end of the Mu insertion. It is widely assumed that the gaps are repaired by a gap-filling host polymerase. Using the E. coli Keio Collection to screen for mutants defective in recovery of stable Mu insertions, we show in this study that the gaps are repaired by the machinery responsible for the repair of double-strand breaks in E. coli-the replication restart proteins PriA-DnaT and homologous recombination proteins RecABC. We discuss alternate models for recombinational repair of the Mu gaps.  相似文献   

9.
Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.  相似文献   

10.
Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy.  相似文献   

11.
The current paradigm based upon ionizing radiation (IR) studies states that cells deficient in either ataxia-telangiectasia-mutated kinase (ATM) or related phosphatidylinositol 3 (PI 3) -kinases (ATR and DNA-PK) are hypersensitive to DNA strand breaks because they are unable to rapidly activate downstream effectors such as p53. Here we have contrasted cell responses to IR and C-1027, a radiomimetic antibiotic that induces DNA strand breaks. At equal levels of DNA double strand breaks, cell lines with inactive ATM or other phosphatidylinositol 3-kinases displayed classical hypersensitivity to IR but not to C-1027. Moreover, phosphorylation of p53 Ser-15 induced by C-1027 was independent of ATM, ATR, or DNA-PK function. We have concluded that the model based on IR studies cannot always be directly applied to DNA damage induced by other strand-scission agents.  相似文献   

12.
To investigate double strand break (DSB) repair and signaling in human glioma cells, we stably transfected human U87 (ATM(+), p53(+)) glioma cells with a plasmid having a single I-SceI site within an inactive green fluorescent protein (GFP) expression cassette, allowing for the detection of homologous recombination repair (HRR) by GFP expression. HRR and nonhomologous end joining (NHEJ) were also determined by PCR. DSB repair was first detected at 12 h postinfection with an adenovirus expressing I-SceI with repair reaching plateau levels between 24 and 48 h. Within this time frame, NHEJ predominated over HRR in the range of 3-50-fold. To assess the involvement of ATM in DSB repair, we first examined whether ATM was associated with the DSB. Chromatin immunoprecipitation showed that ATM was present at the site of the DSB as early as 18 h postinfection. In cells treated with caffeine, an inhibitor of ATM, HRR was reduced, whereas NHEJ was not. In support of this finding, GFP flow cytometry demonstrated that caffeine reduced HRR by 90% under conditions when ATM kinase activity was inhibited. Dominant-negative ATM expressed from adenovirus inhibited HRR by 45%, also having little to no effect on NHEJ. Furthermore, HRR was inhibited by caffeine in serum-starved cells arrested in G(0)/G(1), suggesting that ATM is also important for HRR outside of the S and G(2) cell cycle phases. Altogether, these results demonstrate that HRR contributes substantially to DSB repair in human glioma cells, and, importantly, ATM plays a critical role in regulating HRR but not NHEJ throughout the cell cycle.  相似文献   

13.
Gene targeting through homologous recombination in murine embryonic stem (ES) cells is already strongly suppressed by DNA mismatch-repair (MMR)-dependent anti-recombination when targeting construct and target locus differ at <1% of the nucleotide positions. We demonstrate that MMR activity also raises a strong impediment to gene modification mediated by small synthetic DNA oligonucleotide sequences. In the absence of the DNA MMR gene MSH2, synthetic single-stranded deoxyribo-oligonucleotides can be used to site-specifically modify the ES cell genome. We show that PCR-based procedures can be used to identify and clone modified cells. By this method we have substituted a single codon in the retinoblastoma gene.  相似文献   

14.
Johnson RD  Jasin M 《The EMBO journal》2000,19(13):3398-3407
In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contrasts with expectations from the classical DSB repair model originally proposed for yeast meiotic recombination, but is consistent with models in which recombination is coupled intimately with replication. These results may explain why cytologically observable sister chromatid exchanges are induced only weakly by DNA-damaging agents that cause strand breaks, since most homologous repair events would not be observed. A preference for non-crossover events between sister chromatids suggests that crossovers, although genetically silent, may be disfavored for other reasons. Possibly, a general bias against crossing over in mitotic cells exists to reduce the potential for genome alterations when other homologous repair templates are utilized.  相似文献   

15.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

16.
We show that caspase-3 cleaves Cdc6 at D(290)/S and D(442)/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-alpha-induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-alpha-induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-alpha- or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53-Bax-mediated apoptosis.  相似文献   

17.
The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.  相似文献   

18.
Specific recognition of a region of duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Based on this, we have investigated the ability of the triplex-directed approach to induce mutations at a chromosomal locus in living cells. A mouse fibroblast cell line was constructed containing multiple chromosomal copies of the lambdasupFG1 vector carrying the supFG1 mutation-reporter gene. Cells were treated with specific (psoAG30) or control (psoSCR30) psoralen-conjugated TFOs in the presence and absence of UVA irradiation. The results demonstrated a 6- to 10-fold induction of supFG1 mutations in the psoAG30-treated cells as compared with psoSCR30-treated or untreated control cells. Interestingly, UVA irradiation had no effect onthe mutation frequencies induced by the psoralen-conjugated TFOs, suggesting a triplex-mediated but photoproduct-independent process of mutagenesis. Sequencing data were consistent with this finding since the expected T.A-->A.T transversions at the predicted psoralen crosslinking site were not detected. However, insertions and deletions were detected within the triplex binding site, indicating a TFO-specific induction of mutagenesis. This result demonstrates the ability of triplex-forming oligonucleotides to influence mutation frequencies at a specific site in a mammalian chromosome.  相似文献   

19.
Guo B  Pearce AG  Traulsen KE  Rintala AC  Lee H 《BioTechniques》2001,31(2):314-6, 318, 320-1
The Aequorea victoria green fluorescent protein (GFP) reporter system is a convenient way to monitor gene expression and other cellular functions in mammalian cells. To study gene expression, a GFP-fusion plasmid construct is often transfected into mammalian cells using a variety of methods including calcium phosphate- and liposome-based DNA transfer. Subsequently, the expression of GFP-fusion protein is monitored by fluorescence microscopy or flow cytometry. Here, we report that certain transfection reagents can produce fluorescence that can be detected in a wide range of wavelengths, which can be confused with GFP-fusion protein. The fluorescence false positives can be a problem, particularly when the GFP expression levels are low. To improve the GFP-based detection or screening methods, it is imperative to include an appropriate negative control and to detect GFP using a narrow-wavelength emission filter corresponding to the emission spectrum around the GFP peak.  相似文献   

20.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号