首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most cases the apparent target size obtained by radiation inactivation analysis corresponds to the subunit size or to the size of a multimeric complex. In this report, we examined whether the larger than expected target sizes of some enzymes could be due to secondary effects of free radicals. To test this proposal we carried out radiation inactivation analysis on Escherichia coli DNA polymerase I, Torula yeast glucose-6-phosphate dehydrogenase, Chlorella vulgaris nitrate reductase, and chicken liver sulfite oxidase in the presence and absence of free radical scavengers (benzoic acid and mannitol). In the presence of free radical scavengers, inactivation curves are shifted toward higher radiation doses. Plots of scavenger concentration versus enzyme activity showed that the protective effect of benzoic acid reached a maximum at 25 mM then declined. Mannitol alone had little effect, but appeared to broaden the maximum protective range of benzoic acid relative to concentration. The apparent target size of the polymerase activity of DNA polymerase I in the presence of free radical scavengers was about 40% of that observed in the absence of these agents. This is considerably less than the minimum polypeptide size and may reflect the actual size of the polymerase functional domain. Similar effects, but of lesser magnitude, were observed for glucose-6-phosphate dehydrogenase, nitrate reductase, and sulfite oxidase. These results suggest that secondary damage due to free radicals generated in the local environment as a result of ionizing radiation can influence the apparent target size obtained by this method.  相似文献   

2.
Several model systems were employed to assess indirect effects that occur in the process of using radiation inactivation analysis to determine protein target sizes. In the absence of free radical scavengers, such as mannitol and benzoic acid, protein functional unit sizes can be drastically overestimated. In the case of glutamate dehydrogenase, inclusion of free radical scavengers reduced the apparent target size from that of a hexamer to that of a trimer based on enzyme activity determinations. For glucose-6-phosphate dehydrogenase, the apparent target size was reduced from a dimer to a monomer. The target sizes for both glutamate dehydrogenase and glucose-6-phosphate dehydrogenase in the presence of free radical scavengers corresponded to subunit sizes when determinations of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or immunoblotting were done rather than enzyme activity. The free radical scavengers appear to compete with proteins for damage by secondary radiation products, since irradiation of these compounds can result in production of inhibitory species. Addition of benzoic acid/mannitol to samples undergoing irradiation was more effective in eliminating secondary damage than were 11 other potential free radical scavenging systems. Addition of a free radical scavenging system enables more accurate functional unit size determinations to be made using radiation inactivation analysis.  相似文献   

3.
Assimilatory NADH:nitrate reductase from Chlorella is a homotetramer which contains one of each of the prosthetic groups FAD, heme, and Mo6+ per 100-kDa subunit. At low protein concentrations, this tetramer dissociates to a fully active dimer. To further elucidate the possible relationship between quaternary structure and activity, the functional size of nitrate reductase was determined by radiation inactivation analysis at high and low concentrations of enzyme where the principal physical species would be either tetrameric or dimeric, respectively. In both cases, the size obtained by this method was 100 kDa, suggesting that each subunit in the tetramer or dimer can function independently. These results confirm earlier results which indicated that the subunits are identical and that each contains a full complement of prosthetic groups. We also found that the functional sizes of the partial activities NADH:cytochrome c reductase, NADH:ferricyanide reductase, and reduced methyl viologen:nitrate reductase were fractions (approximately 58 kDa, 47 kDa, and 28 kDa, respectively) of the subunit molecular mass, suggesting that these domains are functionally independent.  相似文献   

4.
The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approximately 60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approximately 105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiations destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity.  相似文献   

5.
Radiation inactivation is a method to determine the apparent target size of molecules. In this report we examined whether radiation inactivation of various enzymes and brain receptors is influenced by the preparation of samples preceding irradiation. The apparent target sizes of endogenous acetylcholinesterase and pyruvate kinase from rat brain and from rabbit muscle and benzodiazepine receptor from rat brain were investigated in some detail. In addition the target sizes of alcohol dehydrogenase (from yeast and horse liver), beta-galactosidase (from Escherichia coli), lactate dehydrogenase (endogenous from rat brain), and 5-HT2 receptors, acetylcholine muscarine receptors, and [35S] butyl bicyclophosphorothionate tertiary binding sites from rat brain were determined. The results show that apparent target sizes are highly influenced by the procedure applied for sample preparation before irradiation. The data indicate that irradiation of frozen whole tissue as opposed to lyophilized tissue or frozen tissue homogenates will estimate the smallest and most relevant functional target size of a receptor or an enzyme.  相似文献   

6.
Herpes simplex virus ribonucleotide reductase (RR) is a tetrameric enzyme composed of two homodimers of large R1 and small R2 subunits with a tyrosyl free radical located on the small subunit. Irradiation of the holoenzyme yielded simple exponential decay curves and an estimated functional target size of 315 kDa. Western blot analysis of irradiated holoenzyme R1 and R2 yielded target sizes of 281 kDa and 57 kDa (approximately twice their expected size). Irradiation of free R1 and analysis by all methods yielded a single exponential decay with target sizes ranging from 128-153 kDa. For free R2, quantitation by enzyme activity and Western blot analyses yielded simple inactivation curves but considerably different target sizes of 223 kDa and 19 kDa, respectively; competition for radioligand binding in irradiated R2 subunits yielded two species, one with a target size of approximately 210 kDa and the other of approximately 20 kDa. These results are consistent with a model in which there is radiation energy transfer between the two monomers of both R1 and R2 only in the holoenzyme, a radiation-induced loss of free radical only in the isolated R2, and an alteration of the tertiary structure of R2.  相似文献   

7.
Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-nitrate reductase and its related enzyme activities, NADPH-cytochrome c reductase and reduced benzyl viologen-nitrate reductase, are all induced following the transfer of ammonia-grown wild-type Neurospora mycelia to nitrate medium. After nitrate reductase is induced to the maximal level, the addition of an ammonium salt to, or the removal of nitrate from, the cultures results in a rapid inactivation of nitrate reductase and its two partial component activities. This rapid inactivation is slowed down by the protein synthesis inhibitor, cycloheximide. Experiments on the mixing of extracts in vitro rule out the presence of an inhibitor of nitrate reductase in free form in extracts containing inactivated nitrate reductase. Ammonia does not inhibit the uptake of nitrate by the mycelia. Inactivation of nitrate reductase in vivo by ammonia depends on the concentration of the ammonium salt and is not reversed by increasing the nitrate concentration of the medium. The nitrate-inducible NADPH-cytochrome c reductase activity and reduced benzyl viologen-nitrate reductase activity respectively of the nitrate-nonutilizing mutants nit-1 and nit-3 are not inactivated in vivo by the addition of an ammonium salt or the withdrawal of nitrate. This finding suggests that the integrity of the nitrate reductase complex is required for the in vivo inactivation of nitrate reductase and its associated activities.  相似文献   

8.
The target size of neurotoxic esterase (NTE), the putative target site for the initiation of organophosphorus-compound-induced delayed neurotoxicity, and acetylcholinesterase (AChE) from hen brain were examined by determining the rate at which the activities of the esterases were destroyed by ionizing irradiation. Samples of hen brain were prepared by slowly drying a microsomal preparation under vacuum. The dried samples were then irradiated with electrons from a 1 MeV Van de Graaff generator. The doses ranged from 0 to 28 Mrad. The radiation doses were calibrated by the rate of inactivation of T1-bacteriophage plaque induction. Following the irradiation procedure, the samples were resuspended in buffer and enzymic activity was measured. The target size of NTE from hen brain was determined to be about 105 kDa, whereas hen brain AChE was found to have a target size of about 53 kDa. The target size of NTE was found to be similar in experiments with rat brain and cat brain. In addition, commercial preparations of electric-eel electric-organ AChE and horse serum butyrylcholinesterase were found to have target sizes that were identical with each other, and also were very similar to that of AChE from hen brain.  相似文献   

9.
Sulfite oxidase (EC 1.8.3.1), purified from chicken liver, is comprised of two identical subunits of 55 kDa, each of which contains a molybdenum and heme prosthetic group. The functional size of sulfite oxidase was determined by radiation inactivation analysis using both full, sulfite:cytochrome c reductase, and partial, sulfite:ferricyanide reductase, catalytic activities. Inactivation of full enzyme activity indicated a target size of 42 kDa while the partial activity indicated a target size of 25 kDa. These results confirm the earlier findings of two equivalent subunits and suggest the presence of a functional domain within the subunit structure that contains the molybdenum center and exhibits a smaller molecular mass than that of the enzyme subunit.  相似文献   

10.
The apparent target sizes of the glucagon receptor and the catalytic unit of adenylate cyclase in rat liver plasma membranes have been measured by the technique of radiation inactivation in an electron beam. When irradiated in the uncoupled state, the apparent target size for the catalytic unit assayed by fluoride-stimulated activity was 160 000, and for the receptor assayed by specific 125I-labelled glucagon binding was 217 000. The corresponding target size estimated from glucagon-stimulated activity after irradiation in the uncoupled state was 389 000. When the complexes were irradiated in the coupled state in the presence of glucagon, the apparent target sizes from 125I-labelled glucagon binding, and fluoride- or glucagon-stimulated activities had similar values of 310 000, 380 000 and 421 000, respectively. However, if the complexes were allowed to uncouple by removing glucagon after irradiation and activity was then assayed after readdition of glucagon, the apparent target size from the glucagon-stimulated activity increases from 421 000 to 811 000.The pattern of apparent target sizes obtained under these different conditions has been tested against the pattern predicted for simple models of the coupling mechanism. The only simple model that is consistent with the pattern of target sizes requires the receptors and catalytic units to be present in approximately equal numbers. On binding glucagon, the receptor forms a locking interaction with the catalytic units, so that the complex and its components are inactivated as a single target with an apparent size of about 380 000 (± 15%). After the removal and readdition of glucagon to complexes that were irradiated in the coupled state, the new population of complexes must contain hybrids of active and inactive partners obtained by exchange between active and inactivated complexes, to account for the doubling in apparent target size to 811 000 for glucagon-stimulated activity. This hybridization of catalytic units and receptors is the essential feature of the model that distinguishes it from others in which permanently associated complexes of the two components are activated by lateral dimersation on binding glucagon. Simple models of this type are shown to be physically improbable. It is emphasized that the models described are based only on the relationships between the apparent target sizes of components that are defined by their functions, and the apparent target sizes do not necessarily relate solely to the components that can be defined structurally as the receptor or catalytic unit.  相似文献   

11.
In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.  相似文献   

12.
Opiate receptor binding decayed exponentially in mouse neuroblastoma-rat glioma (NG108-15) hybrid cell preparations following exposure to increasing doses of ionizing radiation (0.2 to 7.0 Mrads; 2.0 Mrads/min). Target size analysis revealed that [3H][D-Ala2, D-Leu5]enkephalin (agonist) and [3H]naloxone (antagonist) bound specifically to a component with an apparent molecular size of 200,000 +/- 20,000. Lyophilization of cells for the irradiation procedure did not significantly alter receptor affinity or binding capacity for these ligands. Furthermore, the loss of opiate receptor binding in irradiated cell samples could not be attributed to reduced receptor affinity since increasing concentrations of radiolabeled ligand failed to reverse the inhibition; nonspecific binding decreased only slightly under identical experimental conditions. The value of determining molecular size by radiation inactivation analysis was confirmed by showing that apparent target sizes for two representative lysosomal enzymes (beta-galactosidase and alpha-mannosidase) were consistent with results obtained previously using conventional methods. Thus, the data suggest that the ligand binding component of delta-opiate (enkephalin) receptors in NG108-15 cells has a minimum functional size of approximately 200,000.  相似文献   

13.
Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. We have simulated an equilibrium model describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. Our theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation.  相似文献   

14.
Using radiation inactivation, we have measured the size of the H+-ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H+-ATPase in situ was found to be approximately 2.3 X 10(5) daltons. We also used radiation inactivation to measure the size of the Ca2+-ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, we directly compared the sizes of these two ATPases and found them to be essentially the same. We conclude that both H+-ATPase and Ca2+-ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides.  相似文献   

15.
Radiation inactivation analysis was utilized to estimate the sizes of the units catalyzing the various activities of hepatic microsomal glucose-6-phosphatase. This technique revealed that the target molecular weights for mannose-6-P phosphohydrolase, glucose-6-P phosphohydrolase, and carbamyl-P:glucose phosphotransferase activities were all about Mr 75,000. These results are consistent with the widely held view that all of these activities are catalyzed by the same protein or proteins. Certain observations indicate that the molecular organization of microsomal glucose-6-phosphatase is better described by the conformational hypothesis which envisions the enzyme as a single covalent structure rather than by the substrate transport model which requires the participation of several physically separate polypeptides. These include the findings: 1) that the target sizes for glucose-6-P phosphohydrolase and carbamyl-P:glucose phosphotransferase activities were not larger than that for mannose-6-P phosphohydrolase in intact microsomes and 2) that the target size for glucose-6-P phosphohydrolase in disrupted microsomes was not less than that observed in intact microsomes. These findings are most consistent with a model for glucose-6-phosphatase of a single polypeptide or a disulfide-linked dimer which spans the endoplasmic reticulum with the various activities of this multifunctional enzyme residing in distinct protein domains.  相似文献   

16.
All nitrate reductase-related activities of Chlamydomonas reinhardtii wild-type and mutant 305 cells were degraded in vivo under conditions in which the reversible inactivation could take place. When the enzyme was in the inactive form, half-lives of all nitrate reductase-related activities in wild and mutant 305 strains decreased significantly. The only nitrate reductase-related activity present in mutant 104, nitrate reductase-diaphorase, was incapable of undergoing reversible inactivation and was not degraded under any of the conditions tested. Addition of nitrate to inactive nitrate reductase of mutant 305 caused the in vivo reactivation of the enzyme and halted its degradation. Our results indicate that reversibly inactivated nitrate reductase from C. reinhardtii is the main target for a degradation system, and that nitrate reductase related diaphorase must be integrated in a reversibly inactive nitrate reductase complex to undergo degradation. A physiological role for the interconversion process of nitrate reductase can be understood on the basis of these facts.  相似文献   

17.
To determine the radiation sensitivity of galactose oxidase, a 68 kDa monomeric enzyme containing a mononuclear copper ion coordinated with an unusually stable cysteinyl‐tyrosine (Cys‐Tyr) protein free radical. Both active enzyme and reversibly rendered inactive enzyme were irradiated in the frozen state with high‐energy electrons. Surviving polypeptides and surviving enzyme activity were analyzed by radiation target theory giving the radiation sensitive mass for each property. In both active and inactive forms, protein monomer integrity was lost with a single radiation interaction anywhere in the polypeptide, but enzymatic activity was more resistant, yielding target sizes considerably smaller than that of the monomer. These results suggest that the structure of galactose oxidase must make its catalytic activity unusually robust, permitting the enzymatic properties to survive in molecules following cleavage of the polymer chain. Radiation target size for loss of monomers yielded the mass of monomers indicating a polypeptide chain cleavage after a radiation interaction anywhere in the monomer. Loss of enzymatic activity yielded a much smaller mass indicating a robust structure in which catalytic activity could be expressed in cleaved polypeptides.  相似文献   

18.
The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.  相似文献   

19.
J P Andersen  B Vilsen 《FEBS letters》1988,234(1):120-126
The sarcoplasmic reticulum Ca-ATPase was subjected to target size analysis by radiation inactivation in various buffer conditions and after solubilization in monomeric form in non-ionic detergent and in SDS. The target size was also determined for Ca-ATPase in bidimensional crystals formed in the presence of decavanadate or lanthanide. The standardization obtained with defined monomers of Ca-ATPase shows that the target size of Ca-ATPase in the functional membrane-bound state may be ascribed to a single peptide chain, possibly with surrounding lipid. Further analysis of the radiation inactivation sizes of various partial reactions of the pump cycle, including phosphorylation and Ca2+ occlusion, indicated much smaller values than the target size pertaining to decomposition of the whole peptide chain. This is consistent with the existence of separate functional domains within a single peptide chain.  相似文献   

20.
Radiation inactivation of microsomal glutathione S-transferase   总被引:1,自引:0,他引:1  
Radiation inactivation analysis was used to determine the target size of rat liver microsomal glutathione S-transferase both in situ and following purification. When Tris-HCl-washed microsomes were irradiated, there was a 1.5-2.0-fold increase in enzymatic activity over the first 3-6 megarads followed by a decrease in enzymatic activity. Above 48 megarads the radiation inactivation curve of the Tris-HCl-washed microsomes was described by a monoexponential function which gave a target size of 48 kDa. The enzymatic activity of the microsomal enzyme was selectively increased by treating the Tris-HCl-washed microsomes either with N-ethylmaleimide or washing the microsomes with small unilamellar vesicles made from phosphatidylcholine. The inactivation curves obtained with both types of treated microsomes were simple monoexponential decays in enzymatic activity with target sizes of 46 kDa (N-ethylmaleimide) and 44 kDa (unilamellar vesicles). The microsomal enzyme was detergent solubilized and purified. The Mr value of the purified protein was 15,500 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These data suggest that the functional unit of the microsomal form of glutathione S-transferase in situ is a trimer. The target size of the purified enzyme solubilized in Triton X-100 was 85 kDa, and no increase in activity was observed at the lower radiation doses. The increase in the target size of the purified enzyme could not be ascribed solely to the presence of the detergent. This result suggests that the microsomal form of this enzyme can exist as catalytically active oligomers of different sizes depending on its environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号