首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3′ DNA ends, Pol2 is important for the recession of 3′ flaps that can form during imprecise pairing. Indeed, a mutation in the 3′-5′ exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3′ flaps. Thus, Pol2 performs a key 3′ end-processing step in NHEJ.  相似文献   

2.
Repair of DNA double strand breaks by nonhomologous end joining (NHEJ) requires enzymatic processing beyond simple ligation when the terminal bases are damaged or not fully compatible. We transformed yeast with a series of linearized plasmids to examine the role of Pol4 (Pol IV, DNA polymerase beta) in repair at a variety of end configurations. Mutation of POL4 did not impair DNA polymerase-independent religation of fully compatible ends and led to at most a 2-fold reduction in the frequency of joins that require only DNA polymerization. In contrast, the frequency of joins that also required removal of a 5'- or 3'-terminal mismatch was markedly reduced in pol4 (but not rev3, exo1, apn1, or rad1) yeast. In a chromosomal double strand break assay, pol4 mutation conferred a marked increase in sensitivity to HO endonuclease in a rad52 background, due primarily to loss of an NHEJ event that anneals with a 3'-terminal mismatch. The NHEJ activity of Pol4 was dependent on its nucleotidyl transferase function, as well as its unique amino terminus. Paradoxically, in vitro analyses with oligonucleotide substrates demonstrated that although Pol4 fills gaps with displacement of mismatched but not matched 5' termini, it lacks both 5'- and 3'-terminal nuclease activities. Pol4 is thus specifically recruited to perform gap-filling in an NHEJ pathway that must also involve as yet unidentified nucleases.  相似文献   

3.
DNA double strand breaks (DSBs) can be rejoined directly by the nonhomologous end-joining (NHEJ) pathway of repair. Nucleases and polymerases are required to promote accurate NHEJ when the terminal bases of the DSB are damaged. The same enzymes also participate in imprecise rejoining and joining of incompatible ends, important mutagenic events. Previous work has shown that the Pol X family polymerase Pol4 is required for some but not all NHEJ events that require gap filling in Saccharomyces cerevisiae. Here, we systematically analyzed DSB end configurations and found that gaps on both strands and overhang polarity are the principal factors that determine whether a joint requires Pol4. DSBs with 3'-overhangs and a gap on each strand strongly depended on Pol4 for repair, DSBs with 5'-overhangs of the same sequence did not. Pol4 was not required when 3'-overhangs contained a gap on only one strand, however. Pol4 was equally required at 3'-overhangs of all lengths within the NHEJ-dependent range but was dispensable outside of this range, indicating that Pol4 is specific to NHEJ. Loss of Pol4 did not affect the rejoining of DSBs that utilized a recessed microhomology or DSBs bearing 5'-hydroxyls but no gap. Finally, mammalian Pol X polymerases were able to differentially complement a pol4 mutation depending on the joint structure, demonstrating that these polymerases can participate in yeast NHEJ but with distinct properties.  相似文献   

4.
Chan CY  Galli A  Schiestl RH 《DNA Repair》2008,7(9):1531-1541
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae POL3/CDC2 gene encodes polymerase delta that is involved in DNA replication and other DNA repair processes. Here, we show that POL3 is involved in nonhomologous end joining using a plasmid-based end-joining assay in yeast, in which the pol3-t mutation caused a 1.9- to 3.2-fold decrease in the end-joining efficiency of partially compatible 5' or 3' ends, or incompatible ends, similar to the pol4 mutant. The pol3-t pol4 double mutation showed a synergistic decrease in the efficiency of NHEJ with partially compatible 5' ends or incompatible ends. Sequence analysis of the rejoined junctions recovered from the wild-type cells and mutants indicated that POL3 is required for gap filling at 3' overhangs, but not 5' overhangs during POL4-independent nonhomologous end joining. We also show that either Pol3 or Pol4 is required for simple religation of compatible or blunt ends. These results suggest that Pol3 has a generalized function in end joining in addition to its role in gap filling at 3' overhangs to enhance the overall efficiency of nonhomologous end joining. Moreover, the decreased end-joining efficiency seen in the pol3-t mutant was not due to S-phase arrest associated with the mutant. Taken together, our genetic evidence supports a novel role of Pol3 in nonhomologous end joining that facilitates gap filling at 3' overhangs in the absence of Pol4 to maintain genomic integrity.  相似文献   

5.
Lee K  Lee SE 《Genetics》2007,176(4):2003-2014
Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although the genetic components involved in MMEJ are largely unknown, those in NHEJ and SSA are characterized in some detail. Here, we surveyed the role of NHEJ or SSA factors in joining of double-strand breaks (DSBs) with no complementary DNA ends that rely primarily on MMEJ repair. We found that MMEJ requires the nuclease activity of Mre11/Rad50/Xrs2, 3' flap removal by Rad1/Rad10, Nej1, and DNA synthesis by multiple polymerases including Pol4, Rad30, Rev3, and Pol32. The mismatch repair proteins, Rad52 group genes, and Rad27 are dispensable for MMEJ. Sae2 and Tel1 promote MMEJ but inhibit NHEJ, likely by regulating Mre11-dependent ssDNA accumulation at DNA break. Our data support the role of Sae2 and Tel1 in MMEJ and genome integrity.  相似文献   

6.
Li P  Li J  Li M  Dou K  Zhang MJ  Suo F  Du LL 《DNA Repair》2012,11(2):120-130
Non-homologous end joining (NHEJ) is an important mechanism for repairing DNA double-strand breaks (DSBs). The fission yeast Schizosaccharomyces pombe has a conserved set of NHEJ factors including Ku, DNA ligase IV, Xlf1, and Pol4. Their roles in chromosomal DSB repair have not been directly characterized before. Here we used HO endonuclease to create a specific chromosomal DSB in fission yeast and examined the imprecise end joining events allowing cells to survive the continuous expression of HO. Our analysis showed that cell survival was significantly reduced in mutants defective for Ku, ligase IV, or Xlf1. Using Sanger sequencing and Illumina sequencing, we have characterized in depth the repair junction sequences in HO survivors. In wild type cells the majority of repair events were one-nucleotide insertions dependent on Ku, ligase IV, and Pol4. Our data suggest that fission yeast Pol4 is important for gap filling during NHEJ repair and can extend primers in the absence of terminal base pairing with the templates. In Ku and ligase IV mutants, the survivors mainly resulted from two types of alternative end joining events: one used microhomology flanking the HO site to delete sequences of hundreds to thousands of base pairs, the other rejoined the break using the HO-generated overhangs but also introduced one- or two-nucleotide base substitutions. The chromosomal repair assay we describe here should provide a useful tool for further exploration of the end joining repair mechanisms in fission yeast.  相似文献   

7.
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3′-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells.  相似文献   

8.
Pardo B  Ma E  Marcand S 《Genetics》2006,172(4):2689-2694
In yeast, the nonhomologous end joining pathway (NHEJ) mobilizes the DNA polymerase Pol4 to repair DNA double-strand breaks when gap filling is required prior to ligation. Using telomere-telomere fusions caused by loss of the telomeric protein Rap1 and double-strand break repair on transformed DNA as assays for NHEJ between fully uncohesive ends, we show that Pol4 is able to extend a 3'-end whose last bases are mismatched, i.e., mispaired or unpaired, to the template strand.  相似文献   

9.
DNA polymerase mu (Pol mu) is a family X enzyme with unique substrate specificity that contributes to its specialized role in nonhomologous DNA end joining (NHEJ). To investigate Pol mu's unusual substrate specificity, we describe the 2.4 A crystal structure of the polymerase domain of murine Pol mu bound to gapped DNA with a correct dNTP at the active site. This structure reveals substrate interactions with side chains in Pol mu that differ from other family X members. For example, a single amino acid substitution, H329A, has little effect on template-dependent synthesis by Pol mu from a paired primer terminus, but it reduces both template-independent and template-dependent synthesis during NHEJ of intermediates whose 3' ends lack complementary template strand nucleotides. These results provide insight into the substrate specificity and differing functions of four closely related mammalian family X DNA polymerases.  相似文献   

10.
Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.  相似文献   

11.
Daley JM  Wilson TE 《DNA Repair》2008,7(1):67-76
Nonhomologous end joining (NHEJ) directly rejoins DNA double-strand breaks (DSBs) when recombination is not possible. In Saccharomyces cerevisiae, the DNA polymerase Pol4 is required for gap filling when a short 3' overhang must prime DNA synthesis. Here, we examined further end variations to test specific hypotheses regarding Pol4 usage in NHEJ in vivo. Surprisingly, Pol4 dependence at 3' overhangs was reduced when a nonhomologous 5' flap nucleotide was present across from the gap, even though the mismatched nucleotide was corrected, not incorporated. In contrast, a gap with a 5' deoxyribosephosphate (dRP) was as Pol4-dependent as a gap with a 5' phosphate, demonstrating the importance of the downstream base in relaxing the Pol4 requirement. Combined with prior observations of Pol4-independent NHEJ of nicks with 5' hydroxyls, we suggest that base stacking interactions across the broken strands can stabilize a joint, allowing another polymerase to substitute for Pol4. This model predicts that a unique function of Pol4 is to actively stabilize template strands that lack stacking continuity. We also explored whether NHEJ end processing can occur via short- and long-patch pathways analogous to base excision repair. Results demonstrated that 5' dRPs could be removed in the absence of Pol4 lyase activity. The 5' flap endonuclease Rad27 was not required for repair in this or any situation tested, indicating that still other NHEJ 5' nucleases must exist.  相似文献   

12.
The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps   总被引:1,自引:0,他引:1  
Ma Y  Schwarz K  Lieber MR 《DNA Repair》2005,4(7):845-851
In eukaryotic cells, nonhomologous DNA end joining (NHEJ) is a major pathway for repair of double-strand DNA breaks (DSBs). Artemis and the 469kDa DNA-dependent protein kinase (DNA-PKcs) together form a key nuclease for NHEJ in vertebrate organisms. The structure-specific endonucleolytic activity of Artemis is activated by binding to and phosphorylation by DNA-PKcs. We tested various DNA structures in order to understand the range of structural features that are recognized by the Artemis:DNA-PKcs complex. We find that all tested substrates that contain single-to-double-strand transitions can be cleaved by the Artemis:DNA-PKcs complex near the transition region. The cleaved substrates include heterologous loops, stem-loops, flaps, and gapped substrates. Such versatile activity on single-/double-strand transition regions is important in understanding how reconstituted NHEJ systems that lack DNA polymerases can join incompatible DNA ends and yet preserve 3' overhangs. Additionally, the flexibility of the Artemis:DNA-PKcs nuclease may be important in removing secondary structures that hinder processing of DNA ends during NHEJ.  相似文献   

13.
DNA双链断裂的非同源末端连接修复   总被引:1,自引:0,他引:1  
严振鑫  徐冬一 《生命科学》2014,(11):1157-1165
细胞内普遍存在的DNA双链断裂(DSB)可通过同源重组(HR)或非同源末端连接(NHEJ)修复。由于HR仅在存在相同染色体作为模板的时候进行,因此,NHEJ通常为主要的修复方式。在NHEJ中,DSB末端首先由Ku识别,接着由核酸酶、聚合酶在Ku与DNA-PKcs协助下加工,并由连接酶IVXRCC4-XLF连接。NHEJ底物类型多样,末端的修复常包含反复加工的过程,导致修复产物通常无法复原损伤前的序列。虽然无法确保准确修复DNA,NHEJ仍对维持基因组的稳定性具有重要的意义。对NHEJ的研究有助于理解癌症的发生机制并将促进癌症的治疗。  相似文献   

14.
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.  相似文献   

15.
Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2 bp of microhomology (MH) between the two DNA termini. Thus, MH is a common feature of NHEJ. For most naturally occurring human chromosomal deletions (e.g., after oxidative damage or radiation) and translocations, such as those seen in human neoplasms and as well as inherited chromosomal structural variations, MH usage occurs at a frequency that is typical of NHEJ, and does not suggest major involvement of alternative pathways that require more extensive MH. Though we mainly focus on human NHEJ at double-strand breaks, comparison on these points to other eukaryotes, primarily S. cerevisiae, is informative.  相似文献   

16.
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.  相似文献   

17.
Polynucleotide kinase and aprataxin-like forkhead-associated protein (PALF, also called aprataxin- and PNK-like factor (APLF)) has been shown to have nuclease activity and to use its forkhead-associated domain to bind to x-ray repair complementing defective repair in Chinese hamster cells 4 (XRCC4). Because XRCC4 is a key component of the ligase IV complex that is central to the nonhomologous DNA end joining (NHEJ) pathway, this raises the possibility that PALF might play a role in NHEJ. For this reason, we further studied the nucleolytic properties of PALF, and we searched for any modulation of PALF by NHEJ components. We verified that PALF has 3' exonuclease activity. However, PALF also possesses single-stranded DNA endonuclease activity. This single-stranded DNA endonuclease activity can act at all single-stranded sites except those within four nucleotides 3' of a double-stranded DNA junction, suggesting that PALF minimally requires approximately four nucleotides of single-strandedness. Ku, DNA-dependent protein kinase catalytic subunit, and XRCC4-DNA ligase IV do not modulate PALF nuclease activity on single-stranded DNA or overhangs of duplex substrates. PALF does not open DNA hairpins. However, in a reconstituted end joining assay that includes Ku, XRCC4-DNA ligase IV, and PALF, PALF is able to resect 3' overhanging nucleotides and permit XRCC4-DNA ligase IV to complete the joining process in a manner that is as efficient as Artemis. Reduction of PALF in vivo reduces the joining of incompatible DNA ends. Hence, PALF can function in concert with other NHEJ proteins.  相似文献   

18.
DNA double strand breaks (DSB) are the most serious form of DNA damage. Repair of DSBs is important to prevent chromosomal fragmentation, translocations and deletions. Non-homologous end joining (NHEJ) is one of three major pathways for the repair of DSBs in human cells. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes in V(D)J recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku proteins, XRCC4, DNA ligase IV, and Artemis. This review focuses on the mechanisms an dregulation of DSB repair by NHEJ in mammalian cells.  相似文献   

19.
The stability of DNA ends generated by the HO endonuclease in yeast is surprisingly high with a half-life of more than an hour. This transient stability is unaffected by mutations that abolish nonhomologous end joining (NHEJ). The unprocessed ends interact with Yku70p and Yku80p, two proteins required for NHEJ, but not significantly with Rad52p, a protein involved in homologous recombination (HR). Repair of a double-strand break by NHEJ is unaffected by the possibility of HR, although the use of HR is increased in NHEJ-defective cells. Partial in vitro 5' strand processing suppresses NHEJ but not HR. These results show that NHEJ precedes HR temporally, and that the availability of substrate dictates the particular pathway used. We propose that transient stability of DNA ends is a foundation for the permanent stability of telomeres.  相似文献   

20.
V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC’s ability to restrict repair pathway choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号