首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.  相似文献   

3.
Interleukin-10 (IL-10) is known to be a tolerogenic cytokine since it inhibits pro-inflammatory cytokine production and T cell stimulatory capacities of myeloid cells, such as macrophages and dendritic cells. In particular, it has a non-redundant tolerogenic role in intestinal immune homeostasis, since mice and patients with genetic defects in the IL-10/IL-10R pathway develop spontaneously colitis in the presence of a normal intestinal flora. However, IL-10 is also a growth and differentiation factor for B-cells, can promote autoantibody production and has consequently a pathogenic role in systemic lupus erythematosus. Moreover, IL-10 can promote cytotoxic T-cell (CTL) responses and this immunogenic activity might be relevant in type-1 diabetes and anti-tumor immune responses. This review summarizes these paradoxic effects of IL-10 on different types of immune responses, and proposes that different cellular sources of IL-10, in particular IL-10-secreting helper and regulatory T-cells, have different effects on B-cell and CTL responses. Based on this concept we discuss the rationales for targeting the IL-10 pathway in immune-mediated diseases and cancer.  相似文献   

4.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

5.
Interleukin-12 (IL-12), a key cytokine in immune regulation, has an important role in activating the cell-mediated immune response in infectious diseases. Recently, a dichotomy between IL-12 and IL-10 regarding progression of a variety diseases has emerged. IL-12 activates type 1 cytokine production and has an antagonistic effect on type 2 cytokines. Here, by using quantitative competitive PCR, we show that peripheral blood mononuclear cells from bovine leukemia virus-infected animals in the alymphocytotic stage of disease express an increased amount of IL-12 p40 mRNA. In contrast, IL-12 p40 mRNA expression by cells from animals with late-stage disease, termed persistent lymphocytosis, was significantly decreased compared to that by normal and alymphocytotic animals. Interestingly, IL-12 p40 mRNA was also detected in tumor-bearing animals. IL-12 p40 expression occurred only in monocytes/macrophages, not B or T lymphocytes. The present study combined with previous findings suggest that IL-12 in bovine leukemia virus-infected animals may regulate production of other cytokines such as gamma interferon and IL-10 and the progression of bovine leukosis in animals that develop more advanced disease such as a persistent lymphocytosis of B cells or B-cell lymphosarcoma.  相似文献   

6.
Activators of peroxisome proliferator-activated receptor (PPAR)-gamma are anti-inflammatory and have been proposed as therapeutic agents for the treatment of Th1-type inflammatory diseases. We report that nanomolar concentrations of rosiglitazone enhance the production of IL-10 from activated human mature monocyte-derived dendritic cells. Also, rosiglitazone specifically induces the production of IL-10 from TCR-activated human CD4+ T cells and that this effect is PPAR-gamma-dependent. We also demonstrate for the first time the presence of a functional PPAR response element (PPRE) in the human IL-10 promoter region. Finally we show that rosiglitazone can induce IL-10 in combination with 1,25 alpha-dihydroxyvitamin D3 to a greater extent than each treatment alone. In summary our findings demonstrate that IL-10 is upregulated by nanomolar TZDs in immune cells, and this may, in part, be responsible for the potential anti-inflammatory effects of PPAR-gamma in humans.  相似文献   

7.
Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection.  相似文献   

8.
Naive B cells can alter the effector function of their Ig molecule by isotype switching, thereby allowing them to secrete not only IgM, but also the switched isotypes IgG, IgA, and IgE. Different isotypes are elicited in response to specific pathogens. Similarly, dysregulated production of switched isotypes underlies the development of various diseases, such as autoimmunity and immunodeficiency. Thus, it is important to characterize mediators controlling isotype switching, as well as their contribution to the overall B cell response. Isotype switching in human naive B cells can be induced by CD40L together with IL-4, IL-10, IL-13, and/or TGF-beta. Recently, IL-21 was identified as a switch factor for IgG1 and IgG3. However, the effect of IL-21 on switching to IgA, as well as the interplay between IL-21 and other switch factors, remains unknown. We found that IL-4 and IL-21 individually induced CD40L-stimulated human naive B cells to undergo switching to IgG, with IL-4 predominantly inducing IgG1(+) cells and IL-21 inducing IgG3. Culture of naive B cells with CD40L and IL-21, but not IL-4, also yielded IgA(+) cells. Combining IL-4 and IL-21 had divergent effects on isotype switching. Specifically, while IL-4 and IL-21 synergistically increased the generation of IgG1(+) cells from CD40L-stimulated B cells, IL-4 concomitantly abolished IL-21-induced switching to IgA. Our findings demonstrate the dynamic interplay between IL-4 and IL-21 in regulating the production of IgG subclasses and IgA, and suggest temporal roles for these cytokines in humoral immune responses to specific pathogens.  相似文献   

9.
There is growing interest in the fundamental roles that B cells may play in regulating immune responses. Emerging animal studies point to an important contribution of B cell effector cytokines to immune modulation, yet little is known about the factors regulating such cytokine production. We report that the profile of human B cell cytokine production is context dependent, being critically influenced by the balance of signals through the B cell receptor and CD40. B cells appropriately stimulated by sequential B cell receptor and CD40 stimulation proliferate and secrete TNF-alpha, lymphotoxin, and IL-6, which can act not only as autocrine growth and differentiation factors, but also serve to amplify the ongoing immune response. In contrast, CD40 stimulation alone, a mimic of a B cell receiving bystander T cell help in the absence of specific Ag recognition, induces negligible proinflammatory cytokines, but significant production of IL-10 that serves to suppress inappropriate immune responses. We thus describe a novel paradigm of reciprocal regulation of B cell effector cytokines, and ascribe active roles for human B cells in either promoting or suppressing local immune responses through context-dependent cytokine production.  相似文献   

10.
A C-to-A base substitution has been identified at bp −571 in the IL-10 promoter and has been linked to numerous diseases. To investigate the role of this polymorphism on IL-10 production, T cells, B cells and monocytes were enriched from peripheral blood from subjects either homozygous for the C or A allele. Treatment of monocytes and B cells with lipopolysaccharide from individuals homozygous for the C allele resulted in higher levels of IL-10 production as compared to monocytes from individuals homozygous for the A allele. Though not statistically significant, when B cells were treated with anti-IgM or T cells with concanavalin A higher levels of IL-10 were produced from individuals homozygous for the A allele. Changes in IL-10 protein production were paralleled by similar changes in IL-10 mRNA production. These results demonstrate that changes in IL-10 production observed due to the −571 genotype depend on both cell type and stimulus.  相似文献   

11.
12.
Yang HZ  Li Z  Liu HZ  Mi S  Hu ZW 《生理科学进展》2009,40(4):297-302
B细胞主要通过呈递抗原和产生抗体发挥免疫调节作用.新近研究表明,一种全新的B细胞亚群--调节性B细胞(regulatory B cell,Bregs),可通过产生白细胞介素10(IL-10)或转化生长因子β1(TGF-β1)等抑制性细胞因子介导免疫耐受,抑制过度炎症反应.Bregs在一些慢性炎性疾病包括肠炎、类风湿性关节炎、实验性自身免疫脑脊髓炎、多发性硬化症、感染和肿瘤等发生、发展和转归过程起重要调节作用.Bregs的发现和作用机制的阐明,将为全面、深入了解免疫耐受的机制,寻找和开发更合理治疗慢性炎性疾病的策略提供理论依据.本文综述了Bregs的发现、生物学特征、发育调节及其参与炎性疾病发病的作用和机制.  相似文献   

13.
Although recent animal studies have fuelled growing interest in Ab-independent functions of B cells, relatively little is known about how human B cells and their subsets may contribute to the regulation of immune responses in either health or disease. In this study, we first confirm that effector cytokine production by normal human B cells is context dependent and demonstrate that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines. We further report that this cytokine network is dysregulated in patients with the autoimmune disease multiple sclerosis, whose B cells exhibit a decreased average production of the down-regulatory cytokine IL-10. Treatment with the approved chemotherapeutic agent mitoxantrone reciprocally modulated B cell proinflammatory and anti-inflammatory cytokines, establishing that the B cell cytokine network can be targeted in vivo. Prospective studies of human B cells reconstituting following in vivo depletion suggested that different B cell subsets produced distinct effector cytokines. We confirmed in normal human B cell subsets that IL-10 is produced almost exclusively by naive B cells while the proinflammatory cytokines lymphotoxin and TNF-alpha are largely produced by memory B cells. These results point to an in vivo switch in the cytokine "program" of human B cells transitioning from the naive pool to the memory pool. We propose a model that ascribes distinct and proactive roles to memory and naive human B cell subsets in the regulation of memory immune responses and in autoimmunity. Our findings are of particular relevance at a time when B cell directed therapies are being applied to clinical trials of several autoimmune diseases.  相似文献   

14.
The innate ability of B lymphoma cells to escape control by tumor-reactive T cells must be overcome to develop effective immunotherapies for these diseases. Because signals from both the innate and adaptive immune systems direct the acquisition of strong immunogenicity by professional APCs, the effects of IL-2 and the TLR-7 agonist, S28690, on the immunogenic properties of chronic lymphocytic leukemia (CLL) B cells were studied. IL-2 with S28690 caused CLL cells to proliferate and increased their expression of B7-family members, production of TNF-alpha and IL-10, and levels of tyrosine-phosphorylated STAT-1 and STAT-3 proteins. S28690 increased CD25 expression on CLL cells and sensitized them to IL-2 signaling. However, IL-2 did not change TLR-7 expression or signaling in CLL cells. The ability to stimulate T cell proliferation required additional activation of protein kinase C, which inhibited tumor cell proliferation, "switched off" IL-10 production, and caused essentially all CLL cells (regardless of clinical stage) to acquire a CD83(high)CD80(high)CD86(high)CD54(high) surface phenotype marked by the activation of STAT-1 without STAT-3. These findings suggest that TLR-7 "licenses" human B cells to respond to cytokines of the adaptive immune system (such as IL-2) and provide a strategy to increase the immunogenicity of lymphoma cells for therapeutic purposes.  相似文献   

15.
16.
Bordetella bronchiseptica is a Gram-negative bacterium equipped with several colonization factors that allow it to establish a persistent infection of the murine respiratory tract. Previous studies indicate that B. bronchiseptica adenylate cyclase toxin (ACT) and the type III secretion system (TTSS) synergize to drive dendritic cells into an altered phenotype to down-regulate the host immune response. In this study, we examined the effects of B. bronchiseptica ACT and TTSS on murine bone marrow-derived macrophages. We demonstrate that ACT and TTSS are required for the inhibition of Ag-driven CD4+ T cell proliferation by bacteria-infected macrophages. We identify PGE2 as the mediator of this inhibition, and we show that ACT and the TTSS synergize to increase macrophage production of PGE2. We further demonstrate that B. bronchiseptica can modulate normal macrophage function and drive the immune response toward a Th17 phenotype classified by the significant production of IL-17. In this study, we show that B. bronchiseptica-infected macrophages can induce IL-17 production from naive CD4+ splenocytes, and that lung tissues from B. bronchiseptica-infected mice exhibit a strong Th17 immune response. ACT inhibited surface expression of CD40 and CD86, suppressed TNF-alpha production, and up-regulated IL-6 production. TTSS also synergized with ACT to up-regulate IL-10 and PGE2 secretion. These findings indicate that persistent colonization by B. bronchiseptica may rely on the ability of the bacteria to differentially modulate both macrophage and dendritic cell function leading to an altered adaptive immune response and subsequent bacterial colonization.  相似文献   

17.
 Interleukin-10 (IL-10) has both inhibitory and stimulatory effects on diverse cell types of the immune system. It inhibits the antigen-presenting capacity of monocytes/macrophages and stimulates T cell proliferation. Although many tumors spontaneously release IL-10, the physiological relevance of this phenomenon to the in vivo antitumor immune response is not known. To elucidate the physiological role of tumor-released IL-10, we used IL-10-specific antisense oligodeoxynucleotides (AS-ODN) for the inhibition of IL-10 production from the tumor cells. Incubation of MOPC 315 plasmacytoma with IL-10 AS-ODN in vitro resulted in inhibition of IL-10 production and also in enhancement of the expression of major histocompatibility complex (MHC) class I, MHC class II, and B7-1 molecules. MOPC 315 cells incubated with IL-10 AS-ODN (MOPC-IL10AS) for 16 h in vitro showed reduced tumorigenicity in Balb/c mice. The mice implanted with MOPC-IL10AS effectively rejected the tumor graft, and showed strong cytotoxic T lymphocyte (CTL) activity against the parental MOPC 315 cells. In addition, MOPC-IL10AS were more effective as stimulator cells in mixed lymphocyte/tumor cell culture, and as target cells in a CTL assay. These results imply that IL-10 spontaneously released from MOPC 315 cells inhibits their immunogenicity and that the inhibition of IL-10 production by IL-10 AS-ODN may be a way to enhance the host cellular antitumor immune response. Received: 11 November 1999 / Accepted: 6 April 2000  相似文献   

18.
Autoantibody production is a hallmark of autoimmune diseases, such as lupus and rheumatoid arthritis. Accumulating evidence suggests a role of invariant NKT (iNKT) cells in their pathogenesis. Mechanisms underlying the role of iNKT cells in these diseases, however, remain unclear. In this study, we show that iNKT cells suppress IgG anti-DNA Ab and rheumatoid factor production and reduce IL-10-secreting B cells in a contact-dependent manner, but increase total IgG production and enhance activation markers on B cells via soluble factors. In vivo reconstitution with iNKT cells also reduces autoantibody production in iNKT-deficient mice and in SCID mice implanted with B cells. Using an anti-DNA transgenic model, we found that autoreactive B cells spontaneously produce IL-10 and are activated in vivo. In the presence of activated iNKT cells, these autoreactive B cells are selectively reduced, whereas nonautoreactive B cells are markedly activated. Because iNKTs recognize CD1d, we reasoned that CD1d might play a role in the differential regulation of autoreactive versus nonautoreactive B cells by iNKT cells. Indeed, autoreactive B cells express more CD1d than nonautoreactive B cells, and CD1d deficiency in lupus mice exacerbates autoantibody production and enhances Ab response to a self-peptide but not to a foreign peptide. Importantly, iNKT cells fail to inhibit autoantibody production by CD1d-deficient B cells. Thus, iNKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner but activate nonautoreactive B cells via cytokines. Such ability of iNKTs to suppress autoantibody production, without causing global suppression of B cells, has important implications for the development of iNKT-based therapy for autoimmune diseases.  相似文献   

19.
Many epidemiological studies have suggested that the recent increase in prevalence and severity of allergic diseases such as asthma is inversely correlated with Mycobacterium bovis bacillus Calmette Guerin (BCG) vaccination. However, the underlying mechanisms by which mycobacterial components suppress allergic diseases are not yet fully understood. Here we showed the inhibitory mechanisms for development of allergic airway inflammation by using highly purified recombinant Ag85B (rAg85B), which is one of the major protein antigens secreted from M. tuberculosis. Ag85B is thought to be a single immunogenic protein that can elicit a strong Th1-type immune response in hosts infected with mycobacteria, including individuals vaccinated with BCG. Administration of rAg85B showed a strong inhibitory effect on the development of allergic airway inflammation with induction of Th1-response and IL-17and IL-22 production. Both cytokines induced by rAg85B were involved in the induction of Th17-related cytokine-production innate immune cells in the lung. Administration of neutralizing antibodies to IL-17 or IL-22 in rAg85B-treated mice revealed that IL-17 induced the infiltration of neutrophils in BAL fluid and that allergen-induced bronchial eosinophilia was inhibited by IL-22. Furthermore, enhancement of the expression of genes associated with tissue homeostasis and wound healing was observed in bronchial tissues after rAg85B administration in a Th17-related cytokine dependent manner. The results of this study provide evidence for the potential usefulness of rAg85B as a novel approach for anti-allergic effect and tissue repair other than the role as a conventional TB vaccine.  相似文献   

20.
Lee CH  Yeh TH  Lai HC  Wu SY  Su IJ  Takada K  Chang Y 《Journal of virology》2011,85(14):7333-7342
During lytic infection with Epstein-Barr virus (EBV), several viral lytic proteins function to evade immune recognition or to actively suppress immune cells. An EBV lytic transactivator, Zta, induces an immunosuppressive cytokine interleukin 10 (IL-10) in B cells, but whether it regulates IL-10 in the context of epithelial cells is unclear. In this study, we tested nasopharyngeal carcinoma (NPC) cell lines and found that Zta did not induce IL-10 in these epithelial cells. Interestingly, the conditioned medium of Zta-expressing NPC cells enhanced IL-10 production from monocytes. We further revealed that the IL-10-inducing effect involved at least two immunomodulators that were upregulated by Zta and secreted from NPC cells: granulocyte-macrophage colony-stimulating factor (GM-CSF) and prostaglandin E(2) (PGE(2)). Zta was recruited to and activated the GM-CSF promoter, thus upregulating GM-CSF expression. Zta also activated the promoter of cyclooxygenase-2 (COX-2), and Zta-induced COX-2 increased downstream PGE(2) production. Cotreatment with GM-CSF and PGE(2) synergistically induced IL-10 production from monocytes. The IL-10-inducing effect of the Zta-conditioned medium was reduced when GM-CSF or the COX-2/PGE(2) pathway was blocked. The conditioned medium of NPC cells with EBV lytic infection showed a similar increase of GM-CSF and PGE(2) levels as well as the IL-10-inducing effect on monocytes, and knockdown of Zta abolished all the effects. Therefore, through Zta-induced immunomodulators, EBV lytic infection in NPC cells can direct bystander monocytes to produce IL-10, which may be a novel way of EBV to promote local immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号