首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Death by design: apoptosis, necrosis and autophagy   总被引:29,自引:0,他引:29  
Apoptosis is the principal mechanism by which cells are physiologically eliminated in metazoan organisms. During apoptotic death, cells are neatly carved up by caspases and packaged into apoptotic bodies as a mechanism to avoid immune activation. Recently, necrosis, once thought of as simply a passive, unorganized way to die, has emerged as an alternate form of programmed cell death whose activation might have important biological consequences, including the induction of an inflammatory response. Autophagy has also been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy in times of stress. Recent advances have helped to define the function of and mechanism for programmed necrosis and the role of autophagy in cell survival and suicide.  相似文献   

2.
《Autophagy》2013,9(7):1039-1040
With cellular organelles coming in all shapes and sizes, the principle ‘form follows function’ is readily discernible through the cytologist’s lens. Architecturally, one might ask whether there is feedback in this organization. Does a cell ‘know’ when it has constructed membrane into the stacks of the Golgi, the cisternae of the mitochondria or the tubules of the endoplasmic reticulum? Proofreading can occur in vivo as both errors in nucleic acids and misfolds in proteins are recognized by the cell. Are there analogous systems which maintain/regulate the architectural integrity of organelles? Our recent paper entitled “Generation of cubic membranes from controlled homotypic interactions of membrane proteins in the endoplasmic reticulum” suggests that autophagy may play such a role.  相似文献   

3.
Wang K  Klionsky DJ 《Autophagy》2011,7(3):297-300
Mitochondrial dysfunction has severe cellular consequences and is linked with neurodegenerative diseases and aging. Maintaining a healthy population of mitochondria is thus essential for proper cellular homeostasis. Several strategies have evolved to prevent and limit mitochondria damage, and macroautophagy plays a role in degrading superfluous or severely damaged mitochondria. Selective removal of mitochondria by autophagy (termed mitophagy) has been extensively studied recently in both yeast and mammalian cells. In this review, we summarize our current knowledge of mitophagy. We also compare the molecular process of mitophagy with other types of specific autophagic pathways and discuss its biological importance.  相似文献   

4.
Steroid-triggered death by autophagy   总被引:7,自引:0,他引:7  
Programmed cell death is a critical part of normal development, removing obsolete tissues or cells and sculpting body parts to assume their appropriate form and function. Most programmed cell death occurs by apoptosis of individual cells or autophagy of groups of cells. Although these pathways have distinct morphological characteristics, they also have a number of features in common, suggesting some overlap in their regulation. A recent paper by Lee and Baehrecke provides further support for this proposal.(1) These authors present, for the first time, a genetic analysis of autophagy, using the steroid-triggered metamorphosis of Drosophila as a model system. They demonstrate a remarkable degree of overlap between the control of apoptosis and autophagy as well as a key role for the steroid-inducible gene E93 in directing the autophagic death response. This paper also shows that E93 can direct cell death independently from the known death-inducer genes, defining a novel death pathway in Drosophila.  相似文献   

5.
D Milliken 《CMAJ》1998,158(12):1611-1612
  相似文献   

6.
7.
8.
9.
Death by numbers   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
《Autophagy》2013,9(4):702-703
Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth.  相似文献   

12.
A glance through Autophagy or any other journal in this field shows that it is very common to block autophagy by RNA interference-based knockdown of ATG mRNAs in mammalian cell lines. Our lab’s experience is that this approach can easily make for failed experiments because good knockdown of even essential autophagy regulators does not necessarily mean you will get good inhibition of autophagy, and, over time, cells can find ways to circumvent the inhibitory effects of the knockdown.  相似文献   

13.
14.
15.
16.
Autophagy is an evolutionarily conserved lysosomal degradation route for soluble components of the cytosol and organelles. There is great interest in identifying compounds that modulate autophagy because they may have applications in the treatment of major diseases including cancer and neurodegenerative disease. Hundeshagen and colleagues describe this month in BMC Biology a screening assay based on flow cytometry that makes it possible to track distinct steps in the autophagic process and thereby identify novel modulators of autophagy.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号