首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that increased character sampling betters the accuracy of phylogenetic reconstructions in the case of molecular data. A recently published analysis of avian higher-level phylogenetics based on 2954 morphological characters now provides an empirical example to test whether this is also true in the case of morphological characters. Several clades are discussed which are supported by multiple analyses of mutually independent molecular data (sequences of nuclear genes on different chromosomes and mitochondrial genes) as well as morphological apomorphies, but did not result from parsimony analysis of the large morphological data set. Incorrect character scorings in that analysis notwithstanding, it is concluded that in the case of morphological data, increased character sampling does not necessarily better the accuracy of a phylogenetic reconstruction. Because morphological characters usually have a strongly varying complexity, many simple and homoplastic characters may overrule fewer ones of greater phylogenetic significance in large data sets, thus producing a low ratio of phylogenetic signal to 'noise' in the data.  相似文献   

2.
Advances in genomic biology and the increasing availability of genomic resources allow developing hundreds of nuclear protein‐coding (NPC) markers, which can be used in phylogenetic research. However, for low taxonomic levels, it may be more practical to select a handful of suitable molecular loci for phylogenetic inference. Unfortunately, the presence of degenerate primers of NPC markers can be a major impediment, as the amplification success rate is low and they tend to amplify nontargeted regions. In this study, we optimized five NPC fragments widely used in beetle phylogenetics (i.e., two parts of carbamoyl‐phosphate synthetase: CADXM and CADMC, Topoisomerase, Wingless and Pepck) by reducing the degenerate site of primers and the length of target genes slightly. These five NPC fragments and 6 other molecular loci were amplified to test the monophyly of the coccinellid genus Sasajiscymnus Vandenberg. The analysis of our molecular data set clearly supported the genus Sasajiscymnus may be monophyletic but confirmation with an extended sampling is required. A fossil‐calibrated chronogram was generated by BEAST, indicating an origin of the genus at the end of the Cretaceous (77.87 Myr). Furthermore, a phylogenetic informativeness profile was generated to compare the phylogenetic properties of each gene more explicitly. The results showed that COI provides the strongest phylogenetic signal among all the genes, but Pepck, Topoisomerase, CADXM and CADMC are also relatively informative. Our results provide insight into the evolution of the genus Sasajiscymnus, and also enrich the molecular data resources for further study.  相似文献   

3.
4.
By their very nature oceanic island ecosystems offer great opportunities for the study of evolution and have for a long time been recognized as natural laboratories for studying evolution owing to their discrete geographical nature and diversity of species and habitats. The development of molecular genetic methods for phylogenetic reconstruction has been a significant advance for evolutionary biologists, providing a tool for answering questions about the diversity among the flora and fauna on such islands. These questions relate to both the origin and causes of species diversity both within an archipelago and on individual islands. Within a phylogenetic framework one can answer fundamental questions such as whether ecologically and/or morphologically similar species on different islands are the result of island colonization or convergent evolution. Testing hypotheses about ages of the individual species groups or entire community assemblages is also possible within a phylogenetic framework. Evolutionary biologists and ecologists are increasingly turning to molecular phylogenetics for studying oceanic island plant and animal communities and it is important to review what has been attempted and achieved so far, with some cautionary notes about interpreting phylogeographical pattern on oceanic islands.  相似文献   

5.
DNA 序列在蕨类分子系统学研究中的应用   总被引:1,自引:0,他引:1  
刘红梅  张宪春  曾辉 《植物学报》2009,44(2):143-158
在分子系统学研究中, 目的基因或者基因片段的选择是最关键的一步, 由于进化速率的差异, 不同的DNA序列适用于不同分类阶元的系统发育研究。本文综述了目前蕨类分子系统发育研究中常用的DNA序列分析, 它们分别来自叶绿体基因组、核基因组和线粒体基因组, 着重阐明叶绿体基因在蕨类分子系统学研究中的应用。本文还简要介绍了分子系统学研究中常见的问题及解决方法(如内类群和外类群的选择, 适宜DNA片段的选择策略), 总结了目前蕨类植物分子系统学研究所取得的进展和研究现状, 展望了当今国际蕨类分子系统学的研究趋势。  相似文献   

6.
Perkins SL  Martinsen ES  Falk BG 《Parasitology》2011,138(13):1664-1674
Systematics involves resolving both the taxonomy and phylogenetic placement of organisms. We review the advantages and disadvantages of the two kinds of information commonly used for such inferences--morphological and molecular data--as applied to the systematics of metazoan parasites generally, with special attention to the malaria parasites. The problems that potentially confound the use of morphology in parasites include challenges to consistent specimen preservation, plasticity of features depending on hosts or other environmental factors, and morphological convergence. Molecular characters such as DNA sequences present an alternative data source and are particularly useful when not all the parasite's life stages are present or when parasitaemia is low. Nonetheless, molecular data can bring challenges that include troublesome DNA isolation, paralogous gene copies, difficulty in developing molecular markers, and preferential amplification in mixed species infections. Given the differential benefits and shortcomings of both molecular and morphological characters, both should be implemented in parasite taxonomy and phylogenetics.  相似文献   

7.
The phylogenetic relationships within Syndermata (Acanthocephala + Rotifera) are still unresolved. Cladistic morphological analyses support monophyly of Rotifera and Eurotatoria (Bdelloidea + Monogononta), while molecular phylogenies of 18S, 28S, COI, hsp82 and EST propose different topologies, with at least six contrasting scenarios. All these phylogenies are characterized by poor taxon sampling; thus, our aim is to solve the relationships within Syndermata sampling as many sequences as possible from one single locus. We reconstructed phylogenetic relationship using more than 1000 sequences of COI. We performed Maximum Likelihood and Bayesian phylogenetic reconstructions on amino acid alignments, using either Gnathostomulida or Platyhelminthes as an outgroup, and then we performed SH tests to provide confidence on the best phylogenetic hypotheses. All four major clades (Acanthocephala, Bdelloidea, Monogononta and Seisonidea) are always highly supported. The basal relationship among the four clades is not consistently resolved by any of the phylogenetic reconstructions; nevertheless, there is a strong support for a clade of Acanthocephala + Bdelloidea from the SH tests, in agreement with other phylogenies from ribosomal genes and EST analyses.  相似文献   

8.
Although multiple gene sequences are becoming increasingly available for molecular phylogenetic inference, the analysis of such data has largely relied on inference methods designed for single genes. One of the common approaches to analyzing data from multiple genes is concatenation of the individual gene data to form a single supergene to which traditional phylogenetic inference procedures - e.g., maximum parsimony (MP) or maximum likelihood (ML) - are applied. Recent empirical studies have demonstrated that concatenation of sequences from multiple genes prior to phylogenetic analysis often results in inference of a single, well-supported phylogeny. Theoretical work, however, has shown that the coalescent can produce substantial variation in single-gene histories. Using simulation, we combine these ideas to examine the performance of the concatenation approach under conditions in which the coalescent produces a high level of discord among individual gene trees and show that it leads to statistically inconsistent estimation in this setting. Furthermore, use of the bootstrap to measure support for the inferred phylogeny can result in moderate to strong support for an incorrect tree under these conditions. These results highlight the importance of incorporating variation in gene histories into multilocus phylogenetics.  相似文献   

9.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

10.
We determined the nucleotide sequence of the complete mitochondrial genome of the nematode species Anisakis simplex. The genome is circular, 13,916 bp in size and conforms to the general characteristics of nematode mitochondrial DNAs. The gene arrangement of A. simplex is the same as that of Ascaris suum and almost identical to those of rhabditid species with a minor exception concerning the relative position of the AT-rich and non-coding regions and radically different from those of spirurid species. Along with comparisons of gene arrangement, phylogenetic analyses (maximum parsimony, neighbour joining and maximum likelihood methods) based on concatenated amino acid sequences of 12 protein-coding genes from 13 nematode species provided strong support for the sister-group relationship between Ascaridida and Rhabditida. The Shimodaira-Hasegawa and Templeton's tests both rejected the alternative hypothesis of a closer relationship between Ascaridida and Spirurida. These results contradicted the traditional view of nematode classification and a recent molecular phylogenetic study of 18S rDNA data that assigned Ascaridida and Spirurida as being a sister-group. Mapping of gene arrangement across the phylogenetic tree lead to the assumption that the conserved gene arrangement found in Ascaridida-Rhabditida members might have been acquired after the most recent common ancestor of ascaridid/rhabditid members branched off from the basal stock of the rhabditid lineage.  相似文献   

11.
A new method is proposed which uses transitions among acts in non-stereotyped behavioural sequences as phylogenetic characters. This method is derived from the event-pairing method designed for the phylogenetic study of developmental sequences and from ethological analyses of transition matrices. It is applied to study the phylogenetic relationships within a well-known group, the presocial Zetoborinae cockroaches. The analysis is carried out with three data sets: a behavioural data set with transitions among acts in behavioural dyadic sequences, together with morphological and molecular data sets. Non-stereotyped behaviour proved to be phylogenetically informative and to display low homoplasy. This new method opens an avenue for studying the evolution of behaviour in the framework of phylogenetic analysis, which was restricted until now to the study of stereotyped sequences and/or isolated features involved in courting or building activities.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 853–867.  相似文献   

12.
In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.  相似文献   

13.
Magic bullets and golden rules: data sampling in molecular phylogenetics   总被引:6,自引:0,他引:6  
Data collection for molecular phylogenetic studies is based on samples of both genes and taxa. In an ideal world, with no limitations to resources, as many genes could be sampled as deemed necessary to address phylogenetic problems. Given limited resources in the real world, inadequate (in terms of choice of genes or number of genes) sequences or restricted taxon sampling can adversely affect the reliability or information gained in phylogenetics. Recent empirical and simulation-based studies of data sampling in molecular phylogenetics have reached differing conclusions on how to deal with these problems. Some advocated sampling more genes, others more taxa. There is certainly no ‘magic bullet’ that will fit all phylogenetic problems, and no specific ‘golden rules’ have been deduced, other than that single genes may not always contain sufficient phylogenetic information. However, several general conclusions and suggestions can be made. One suggestion is that the determination of a multiple, but moderate number (e.g., 6–10) of gene sequences might take precedence over sequencing a larger set of genes and thereby permit the sampling of more taxa for a phylogenetic study.  相似文献   

14.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

15.
A retroposon analysis of Afrotherian phylogeny   总被引:8,自引:0,他引:8  
Recent comprehensive studies of DNA sequences support the monophyly of Afrotheria, comprising elephants, sirenians (dugongs and manatees), hyraxes, tenrecs, golden moles, aardvarks, and elephant shrews, as well as that of Paenungulata, comprising elephants, sirenians, and hyraxes. However, phylogenetic relationships among paenungulates, as well as among nonpaenungulates, have remained ambiguous. Here we applied an extensive retroposon analysis to these problems to support the monophyly of aardvarks, tenrecs, and golden moles, with elephant shrews as their sister group. Regarding phylogenetic relationships in Paenungulata, we could characterize only one informative locus, although we could isolate many insertions specific to each of three lineages, namely, Proboscidea, Sirenia, and Hyracoidea. These data prompted us to reexamine phylogenetic relationships among Paenungulata using 19 nuclear gene sequences resulting in three different analyses, namely, short interspersed element (SINE) insertions, nuclear sequence analyses, and morphological cladistics, supporting different respective phylogenies. We concluded that these three lineages diverged very rapidly in a very short evolutionary period, with the consequence that ancestral polymorphism present in the last common ancestor of Paenungulata results in such incongruence. Our results suggest the rapid fixation of many large-scale morphological synapomorphies for Tethytheria; implications of this in relation to the morphological evolution in Paenungulata are discussed.  相似文献   

16.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

17.
Cyanobacteria are photosynthetic bacteria that occupy various habitats across the globe, playing critical roles in many of Earth's biogeochemical cycles both in both aquatic and terrestrial systems. Despite their well-known significance, their taxonomy remains problematic and is the subject of much research. Taxonomic issues of Cyanobacteria have consequently led to inaccurate curation within known reference databases, ultimately leading to problematic taxonomic assignment during diversity studies. Recent advances in sequencing technologies have increased our ability to characterize and understand microbial communities, leading to the generation of thousands of sequences that require taxonomic assignment. We herein propose CyanoSeq ( https://zenodo.org/record/7569105 ), a database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. The taxonomy of CyanoSeq is based on the current state of cyanobacterial taxonomy, with ranks from the domain to genus level. Files are provided for use with common naive Bayes taxonomic classifiers, such as those included in DADA2 or the QIIME2 platform. Additionally, FASTA files are provided for creation of de novo phylogenetic trees with (near) full-length 16S rRNA gene sequences to determine the phylogenetic relationship of cyanobacterial strains and/or ASV/OTUs. The database currently consists of 5410 cyanobacterial 16S rRNA gene sequences along with 123 Chloroplast, Bacterial, and Vampirovibrionia (formally Melainabacteria) sequences.  相似文献   

18.
The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119 000 nearly full-length sequences and 28 000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.  相似文献   

19.
The aim of this study was to compare the usefulness of two chloroplast-encoded genes (rpoA and rbcL) and the nuclear-encoded small subunit (SSU) ribosomal RNA for reconstructing phylogenetic relationships among diatoms at lower taxonomic levels. To this end, the rpoA and rbcL genes for selected centric and pennate diatoms were sequenced. The new rpoA and rbcL sequences, and an existing nuclear-encoded SSU rRNA data set, were subjected to weighted/unweighted parsimony, maximum likelihood, minimum evolution, and Bayesian analyses. All of the tree-building methods employed showed, based on the support values, that the rpoA gene was the most useful, relative to the rbcL and SSU rRNA genes, in determining phylogenetic relationships among the sampled diatoms. The support values for the relationships among the pennate lineages were, in many instances, greater in the rpoA trees than in the SSU rRNA trees. These results suggest that rpoA might be of value in determining phylogenetic relationships among pennate lineages.  相似文献   

20.
鞘翅目昆虫线粒体基因组研究进展   总被引:2,自引:0,他引:2  
聂瑞娥  杨星科 《昆虫学报》2014,57(7):860-868
鞘翅目(Coleoptera)是世界上最具多样性的类群,具有很高的生态和形态多样性,这些多样性吸引了很多进化生物学家和分类学家的关注。随着分子生物学的发展,分子生物学技术广泛应用于鞘翅目系统学的研究,但随着研究的深入,简单的分子片段已经不能满足研究的需求,需要发掘更新的分子标记。近年来,线粒体全基因组已经成为鞘翅目分子系统学研究中很重要的分子标记之一,并广泛地应用于鞘翅目昆虫各个阶元的研究中。本文就鞘翅目线粒体全基因组的概况、研究进展及存在问题进行了总结和讨论。目前,鞘翅目线粒体基因组的研究主要包括物种线粒体基因组组成与结构、分子系统学和分子进化等方面。线粒体基因组在解决系统发育和进化方面表现出了很多的优越性,然而也存在着一些缺点,如序列难获得、基因类型单一、各基因进化速率不同、应用较局限等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号