首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215.  相似文献   

2.
Cell-cell adhesion is a critical process for the formation and maintenance of tissue patterns during development, as well as invasion and metastasis of cancer cells. Although great strides have been made regarding our understanding of the processes that play a role in cell-cell adhesion, the precise mechanisms by which diverse signaling events regulate cell and tissue architecture is poorly understood. In this commentary we will focus on the Eph/ephrin signaling system, and specifically how the ephrinB1 transmembrane ligand for Eph receptor tyrosine kinases sends signals affecting cell-cell junctions. In a recent study using the epithelial cells of early stage Xenopus embryos, we have shown that loss- or gain-of function of ephrinB1 can disrupt cell-cell contacts and tight junctions. This study reveals a mechanism where ephrinB1 competes with active Cdc42 for binding to Par-6, a scaffold protein central to the Par polarity complex (Par-3/Par-6/Cdc42/aPKC) and disrupts the localization of tight junction-associated proteins (ZO-1, Cingulin) at tight junctions. This competition reduces aPKC activity critical to maintaining and/or forming tight junctions. Finally, phosphorylation of ephrinB1 on specific tyrosine residues can block the interaction between ephrinB1 and Par-6 at tight junctions, and restore tight junction formation. Recent evidence indicates that de-regulation of forward signaling through EphB receptors may play a role in metastatic progression in colon cancer. In light of the new data showing an effect of ephrinB reverse signaling on tight junctions, an additional mechanism can be hypothesized where de-regulation of ephrinB1 expression or phosphorylation may also impact metastatic progression.  相似文献   

3.
Here we report on the role of alpha-catenin in the cellular localization of activated leukocyte cell adhesion molecule, ALCAM, and cadherin-mediated cell adhesion in human prostate cancer cells. Cell lines that have a functional E-cadherin-mediated cell adhesion (DU-145 and LNCaP) show ALCAM staining at cell-cell contacts. In contrast, in cell lines that lack alpha-catenin expression (ALVA-31, PC-3, and PPC-1), E-cadherin-mediated adhesion is disturbed and ALCAM staining is cytoplasmic. A role of alpha-catenin in the recruitment of E-cadherin and ALCAM to cell-cell contacts was established by transfection of an alpha-N-catenin construct into cell lines ALVA-31 and PC-3. This resulted not only in the correct assembly of E-cadherin/alpha-catenin complexes at the cell membrane but also in localization of ALCAM to cell-cell contacts, indicating that indeed alpha-catenin affects ALCAM localization.  相似文献   

4.
Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell-cell adhesion--the energy of adhesion at the cell-cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo.  相似文献   

5.
Human NRAGE, a neurotrophin receptor p75 interaction MAGE homologue, confers NGF-dependent apoptosis of neuronal cells by inducing caspase activation through the JNK-c-jun-dependent pathway and arrests cell growth through the p53-dependent pathway. Our findings showed that human NRAGE could significantly alter the cell skeleton and inhibit homotypic cell-cell adhesion in U2OS cells. With further experiments, we revealed that human NRAGE disrupts colocalization of the E-cadherin/beta-catenin complex and translocates beta-catenin from the cell membrane into the cytoplasm and nucleus. Synchronously, NRAGE also decreases the total protein level of beta-catenin, especially when NRAGE expresses for a long time. More importantly, knock down of NRAGE by RNA interference in PANC-1 cell significantly reinforces E-cadherin/beta-catenin homotypic cell adhesion. The data demonstrate the importance of human NRAGE in homotypic cell-to-cell adhesion and illuminate the mechanism of human NRAGE in the process of inhibition of cell adhesion, which suggests that human NRGAE plays a potential negative role in cancer metastasis.  相似文献   

6.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion.  相似文献   

7.
Classical cadherins accumulate at cell-cell contacts as a characteristic response to productive adhesive ligation. Such local accumulation of cadherins is a developmentally regulated process that supports cell adhesiveness and cell-cell cohesion. Yet the molecular effectors responsible for cadherin accumulation remain incompletely understood. We now report that Myosin 2 is critical for cells to concentrate E-cadherin at cell-cell contacts. Myosin 2 is found at cadherin-based cell-cell contacts and its recruitment requires E-cadherin activity. Indeed, both Myosin 2 recruitment and its activation were stimulated by E-cadherin homophilic ligation alone. Inhibition of Myosin 2 activity by blebbistatin or ML-7 rapidly impaired the ability of cells to concentrate E-cadherin at adhesive contacts, accompanied by decreased cadherin-based cell adhesiveness. The total surface expression of cadherins was unaffected, suggesting that Myosin 2 principally regulates the regional distribution of cadherins at the cell surface. The recruitment of Myosin 2 to cadherin contacts, and its activation, required Rho kinase; furthermore, inhibition of Rho kinase signaling effectively phenocopied the effects of Myosin 2 inhibition. We propose that Myosin 2 is a key effector of Rho-Rho kinase signaling that regulates cell-cell adhesion by determining the ability of cells to concentrate cadherins at contacts in response to homophilic ligation.  相似文献   

8.
Cadherin-based cell-cell adhesions play important roles in embryonic development and in the maintenance of normal tissue architecture. Little is known, however, about the mechanisms of controlling cadherin dynamics at the cell surface. We previously demonstrated that E-cadherin functions as a cis (lateral)-dimer on the cell surface by chemical cross-linking. In this study, we examined the dynamics of E-cadherin cis-dimer formation during cell-cell adhesion assembly by using chemical cross-linking. Although treatment with cytochalasin D, a potent inhibitor of actin polymerization, was shown to inhibit the formation of cell-cell contacts, the dynamics of E-cadherin cis-dimer formation was not affected. This result indicated that the cis-dimer formation procedure is independent of cell-cell adhesion assembly in vivo. However, the cell aggregation and dissociation assays showed that the cytochalasin D treatment shifted the cadherin-based cell adhesion from a strong to a weak state. Taken together, these results strongly support the possibility that the E-cadherin cis-dimer is a minimal functional unit in cadherin-mediated cell-cell adhesion in vivo.  相似文献   

9.
10.
11.
12.
Epithelial cell-cell interactions require localized adhesive interactions between E-cadherin on opposing membranes and the activation of downstream signaling pathways that affect membrane and actin dynamics. However, it is not known whether E-cadherin engagement and activation of these signaling pathways are locally coordinated or whether signaling is sustained or locally down-regulated like other receptor-mediated pathways. To obtain high spatiotemporal resolution of immediate-early signaling events upon E-cadherin engagement, we used laser tweezers to place beads coated with functional E-cadherin extracellular domain on cells. We show that cellular E-cadherin accumulated rapidly around beads, reaching a sustained plateau level in 1-3 min. Phosphoinositides and Rac1 co-accumulated with E-cadherin, reached peak levels with E-cadherin, but then rapidly dispersed. Both E-cadherin and Rac1 accumulated independently of Rac1 GTP binding/hydrolysis, but these activities were required for Rac1 dispersal. E-cadherin accumulation was dependent on membrane dynamics and actin polymerization, but actin did not stably co-accumulate with E-cadherin; mathematical modeling showed that diffusion-mediated trapping could account for the initial E-cadherin accumulation. We propose that initial E-cadherin accumulation requires active membrane dynamics and involves diffusion-mediated trapping at contact sites; to propagate further contacts, phosphatidylinositol 3-kinase and Rac1 are transiently activated by E-cadherin engagement and initiate a new round of membrane dynamics, but they are subsequently suppressed at that site to allow maintenance of weak E-cadherin mediated adhesion.  相似文献   

13.
The non-receptor tyrosine kinase c-Src is activated in many human cancer types, and induces deregulation of cadherin-based cell-cell contacts and actin cytoskeleton. Because ezrin, a protein which cross-links the plasma membrane with the actin cytoskeleton, is often over-expressed in human cancers, and participates in cell adhesion, motility, and cell scattering, we therefore investigated whether c-Src co-operates with ezrin in regulating cell-cell contacts in a murine mammary carcinoma cell line, SP1. SP1 cells over-expressing wild type ezrin, or an activated c-Src mutant, formed loose aggregates which scattered spontaneously when plated on plastic. When wild type ezrin and activated c-Src were co-expressed, scattering was increased, cell-cell contacts disrupted, and cell aggregation prevented. Pre-treatment with the c-Src family kinase inhibitor PP2 partially restored aggregation of cells expressing activated c-Src and wild type ezrin, indicating that c-Src family kinases act co-operatively with ezrin in regulating cell-cell contacts. Furthermore, expression of a truncated NH2-terminal domain of ezrin, which has dominant negative function, blocked the cell scattering effect of activated c-Src and promoted formation of cohesive cell-cell contacts. Together, these results suggest co-operativity between c-Src and ezrin in deregulation of cell-cell contacts and enhancing scattering of mammary carcinoma cells.  相似文献   

14.
The mRNA endonuclease PMR1 initiates mRNA decay by forming a selective complex with its translating substrate mRNA. Previous work showed that the ability of PMR1 to target to polysomes and activate decay depends on the phosphorylation of a tyrosine residue at position 650. The current study shows that c-Src is responsible for activating this mRNA decay pathway. c-Src was recovered with immunoprecipitated PMR1, and it phosphorylates PMR1 in vitro and in vivo. The interaction with c-Src involves two domains of PMR1: Y650 and a series of proline-rich SH3 peptides in the N terminus. In cells with little c-Src, PMR1 targeting to polysomes is induced by constitutively active c-Src but not by inactive forms of the kinase. Similarly, only active c-Src induces PMR1-mediated mRNA decay. Finally, we show that EGF rapidly induces c-Src phosphorylation of PMR1, providing a direct link between tyrosine kinase-mediated signal transduction and mRNA decay.  相似文献   

15.
Leukocyte adhesion is mediated totally and transendothelial migration partially by heterotypic interactions between the 1- and 2-integrins on the leukocytes and their ligands, Ig-like cell adhesion molecules (Ig-CAM), VCAM-1, and ICAM-1, on the endothelium. Both integrins and Ig-CAMs are known to have signaling capacities. In this study we analyzed the role of VCAM-1-mediated signaling in the control of endothelial cell-cell adhesion and leukocyte transendothelial migration. Antibody-mediated cross-linking of VCAM-1 on IL-1-activated primary human umbilical vein endothelial cells (pHUVEC) induced actin stress fiber formation, contractility, and intercellular gaps. The effects induced by VCAM-1 cross-linking were inhibited by C3 toxin, indicating that the small GTPase p21Rho is involved. In addition, the effects of VCAM-1 were accompanied by activation of Rac, which we recently showed induce intercellular gaps in pHUVEC in a Rho-dependent fashion. With the use of a cell-permeable peptide inhibitor, it was shown that Rac signaling is required for VCAM-1-mediated loss of cell-cell adhesion. Furthermore, VCAM-1-mediated signaling toward cell-cell junctions was accompanied by, and dependent on, Rac-mediated production of reactive oxygen species and activation of p38 MAPK. In addition, it was found that inhibition of Rac-mediated signaling blocks transendothelial migration of monocytic U937 cells. Together, these data indicate that VCAM-1-induced, Rac-dependent signaling plays a key role in the modulation of vascular-endothelial cadherin-mediated endothelial cell-cell adhesion and leukocyte extravasation. human umbilical vein endothelial cells; vascular-endothelial cadherin; F-actin; reactive oxygen species; p38 mitogen-activated protein kinase; vascular cell adhesion molecule  相似文献   

16.
Anoikis, i.e. apoptosis induced by detachment from the extracellular matrix, is thought to be involved in the shedding of enterocytes at the tip of intestinal villi. Mechanisms controlling enterocyte survival are poorly understood. We investigated the role of E-cadherin, a key protein of cell-cell adhesion, in the control of anoikis of normal intestinal epithelial cells, by detaching murine villus epithelial cells from the underlying basement membrane while preserving cell-cell interactions. We show that upon the loss of anchorage, normal enterocytes execute a program of apoptosis within minutes, via a Bcl-2-regulated and caspase-9-dependent pathway. E-cadherin is lost early from cell-cell contacts. This process precedes the execution phase of detachment-induced apoptosis as it is only weakly modulated by Bcl-2 overexpression or caspase inhibition. E-cadherin loss, however, is efficiently prevented by lysosome and proteasome inhibitors. We also found that a blocking anti-E-cadherin antibody increases the rate of anoikis, whereas the activation of E-cadherin using E-cadherin-Fc chimera proteins reduces anoikis. In conclusion, our results stress the striking sensitivity of normal enterocytes to the loss of anchorage and the contribution of E-cadherin to the control of their survival/apoptosis balance. They open new perspectives on the key role of this protein, which is dysregulated in the intestinal epithelium in both inflammatory bowel disease and cancer.  相似文献   

17.
Tie2 belongs to the receptor tyrosine kinase family and functions as a receptor for Angiopoietin-1 (Ang1). Gene-targeting analyses of either Ang1 or Tie2 in mice reveal a critical role of Ang1-Tie2 signalling in developmental vascular formation. It remains elusive how the Tie2 signalling pathway plays distinct roles in both vascular quiescence and angiogenesis. We demonstrate here that Ang1 bridges Tie2 at cell-cell contacts, resulting in trans-association of Tie2 in the presence of cell-cell contacts. In clear contrast, in isolated cells, extracellular matrix-bound Ang1 locates Tie2 at cell-substratum contacts. Furthermore, Tie2 activated at cell-cell or cell-substratum contacts leads to preferential activation of Akt and Erk, respectively. Microarray analyses and real-time PCR validation clearly show the differential gene expression profile in vascular endothelial cells upon Ang1 stimulation in the presence or absence of cell-cell contacts, implying downstream signalling is dependent upon the spatial localization of Tie2.  相似文献   

18.
The expression of the cell-cell adhesion molecules E- and P-cadherin has been analyzed in seven mouse epidermal keratinocyte cell lines representative of different stages of epidermal carcinogenesis. An inverse correlation between the amount of E-cadherin protein and tumorigenicity of the cell lines has been found, together with a complete absence of E-cadherin protein and mRNA expression in three carcinoma cell lines (the epithelioid HaCa4 and the fibroblastoid CarB and CarC cells). A similar result has been detected in tumors induced in nude mice by the cell lines, where induction of E-cadherin expression takes place in moderately differentiated squamous cell carcinomas induced by HaCa4 cells, although at much lower levels than in well-differentiated tumors induced by the epithelial PDV or PDVC57 cell lines. Complete absence of E-cadherin expression has been observed in spindle cell carcinomas induced by CarB or CarC cells. P-cadherin protein was detected in all cell lines that exhibit an epithelial (MCA3D, AT5, PDV, and PDVC57) or epithelioid (HaCa4) morphology, as well as in nude mouse tumors, independent of their tumorigenic capabilities. However, complete absence of P-cadherin was observed in the fibroblast-like cells (CarB and CarC) and in spindle cell carcinomas. The introduction of an exogenous E-cadherin cDNA into HaCa4 cells, or reactivation of the endogenous E-cadherin gene, leads to a partial suppression of the tumorigenicity of this highly malignant cell line. These results suggest a role for E-cadherin in the progression to malignancy of mouse epidermal carcinogenesis. They also suggest that the loss of both E- and P-cadherin could be associated to the final stage of carcinogenesis, the development of spindle cell carcinomas.  相似文献   

19.
Directed cortical actin assembly is the driving force for intercellular adhesion. Regulated by phosphorylation, vasodilator-stimulated phosphoprotein (VASP) participates in actin fiber formation. We screened for endothelial proteins, which bind to VASP, dependent on its phosphorylation status. Differential proteomics identified αII-spectrin as such a VASP-interacting protein. αII-Spectrin binds to the VASP triple GP5-motif via its SH3 domain. cAMP-dependent protein kinase–mediated VASP phosphorylation at Ser157 inhibits αII-spectrin–VASP binding. VASP is dephosphorylated upon formation of cell–cell contacts and in confluent, but not in sparse cells, αII-spectrin colocalizes with nonphosphorylated VASP at cell–cell junctions. Ectopic expression of the αII-spectrin SH3 domain at cell–cell contacts translocates VASP, initiates cortical actin cytoskeleton formation, stabilizes cell–cell contacts, and decreases endothelial permeability. Conversely, the permeability of VASP-deficient endothelial cells (ECs) and microvessels of VASP-null mice increases. Reconstitution of VASP-deficient ECs rescues barrier function, whereas αII-spectrin binding-deficient VASP mutants fail to restore elevated permeability. We propose that αII-spectrin–VASP complexes regulate cortical actin cytoskeleton assembly with implications for vascular permeability.  相似文献   

20.
Hori K  Konno D  Maruoka H  Sobue K 《FEBS letters》2003,554(1-2):30-34
Insulin receptor substrate p53 (IRSp53) is a key player in cytoskeletal dynamics, interacting with the actin modulators WAVE2 and Mena. Here, we identified a PDZ protein, MALS, as an IRSp53-interacting protein using a yeast two-hybrid screen. A pull-down assay showed that IRSp53 and MALS interact through the PDZ domain of MALS and the C-terminal PDZ-binding sequence of IRSp53. Their interaction in MDCK cells was also demonstrated by co-immunoprecipitation. Immunocytochemistry showed the colocalization of IRSp53 and MALS at cell-cell contacts. Cytochalasin D induced the redistribution of both proteins to the cytosol. Thus, MALS is a partner of IRSp53 anchoring the actin-based membrane cytoskeleton at cell-cell contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号