首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.  相似文献   

3.
4.
5.
Dax1 regulates testis cord organization during gonadal differentiation   总被引:5,自引:0,他引:5  
Mutations of the DAX1 nuclear receptor gene cause adrenal hypoplasia congenita, an X-linked disorder characterized by adrenal insufficiency and hypogonadotropic hypogonadism. Targeted deletion of Dax1 in mice also reveals primary testicular dysgenesis, which is manifest by obstruction of the rete testis by Sertoli cells and hyperplastic Leydig cells, leading to seminiferous tubule dilation and degeneration of germ cells. Because Dax1 is expressed early in gonadal development, and because Sertoli and Leydig cells are located ectopically in the adult, we hypothesized that these testis abnormalities are the result of an early defect in testis development. In Dax1(-/Y) males, the gonad develops normally until 12.5 dpc. However, by 13.5 dpc, the testis cords are disorganized and incompletely formed in Dax1-deficient mice. The number of germ and Sertoli cells is unchanged, and the expression of Sertoli-specific markers appears to be normal. However, the number of peritubular myoid cells, which normally surround the testis cords, is reduced. BrdU labeling of peritubular myoid cells is low, consistent with decreased proliferation. The basal lamina produced by peritubular myoid and Sertoli cells is disrupted, leading to open and incompletely formed testis cords. Leydig cells, which normally reside in the peritubular space and extend from the coelomic surface to the dorsal surface of the gonad, are restricted to the coelomic surface of Dax1-deficient testis. We conclude that Dax1 plays a crucial role in testis differentiation by regulating the development of peritubular myoid cells and the formation of intact testis cords. The developmental abnormalities in the Dax1-deficient testis lay the foundation for gonadal dysgenesis and infertility in adult mice and, potentially in humans with DAX1 mutations.  相似文献   

6.
The levels of IL-1alpha, IL-1beta and IL-1Ra were higher in homogenates of testicular tissue from sexually immature than those from mature mice. Immunohistochemical staining of testicular tissues from sexually immature and adult mice show that differentiated germ cells express higher levels of IL-1alpha compared to Sertoli cells and Leydig cells/interstitial cells. Peritubular cells of sexually immature and adult mice did not express IL-1alpha. Testicular tissue cells of adult mice showed high levels of expression of IL-1beta, mainly in the cytoplasm and nucleus of the spermatogonia and in spermatocytes. Sertoli cells and Leydig/interstitial cells were also highly stained for IL-1beta. However, peritubular cells did not express IL-1beta. On the other hand, testicular tissue cells from sexually immature mice, showed high levels of IL-1beta, mainly in spermatocytes. Spermatogonia showed low levels of IL-1beta expression. Also, high levels of IL-1beta expression were detected in Leydig/interstitial cells. Peritubular cells clearly showed IL-1beta expression. Testicular tissue cells from adult mice, showed IL-1Ra expression in spermatogonia, Sertoli and Leydig/interstitial cells. IL-1Ra expression was clearly present in the Golgi apparatus of spermatogonia and Sertoli cells. However, peritubular cells did not show IL-1Ra expression. Testicular tissue cells from sexually immature mice, also showed high levels of IL-1Ra expression mainly in the cytoplasm and nucleus of the spermatogonia and Sertoli cells. In addition, Leydig/interstitial cells and peritubular cells also expressed IL-1Ra. Our results demonstrate, for the first time, the expression of IL-1beta in germ and Sertoli cells, and IL-1Ra in Leydig/interstitial cells of testicular tissues from adult and sexually immature mice, under in vivo conditions. In addition, the relative elevated levels of the IL-1 system in the testis of immature mice compared to mature mice may indicate its involvement in the spermatogenesis.  相似文献   

7.
To investigate the involvement of flotillin-1 in acute experimental testicular torsion, we examined the expression and cellular localization of flotillin-1 and cathepsin D in the rat testis with ischemia/reperfusion (I/R) injury. Western blot analysis showed that the expression of flotillin-1 increased significantly 6h after I/R and that the level remained elevated for 48 h. Immunohistochemically, flotillin-1 was constitutively localized in some Sertoli cells, peritubular myoid cells, and interstitial cells in the normal testis. After I/R injury, Sertoli cells in the damaged tubules were intensely immunostained for flotillin-1 at 24 and 48 h after I/R. Flotillin-1 was also detected in some inflammatory cells in the interstitial space around damaged tubules. Furthermore, flotillin-1 was colocalized with cathepsin D, a lysosomal marker, in normal testis (mainly in Sertoli cells), and the colocalization was greater in Sertoli cells and macrophages in I/R injured testes. Therefore, we postulate that flotillin-1 immunoreactivity is increased in some Sertoli and inflammatory cells (especially in ED1-positive activated macrophages) in testicular torsion and that flotillin-1 in the injured testis associates with lysosomes in Sertoli cells and macrophages, activating subsequent signals in inflammatory macrophages and Sertoli cells after I/R.  相似文献   

8.
9.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

10.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

11.
The present study demonstrates the expression of adrenomedullin (ADM) in the rat Sertoli cells and its effect on inhibin production. The regulation of ADM by FSH and its interaction with endothelin 1 (EDN1) in the rat Sertoli cells have also been established. Primary culture of Sertoli cells secreted 414+/-27 pg immunoreactive ADM per 10(6) cells in 24 h and expressed Adm mRNA. In addition, the Sertoli cell was shown to co-express mRNAs encoding for the calcitonin receptor-like receptor (CALCRL) and receptor activity-modifying proteins (RAMPs) 1-3. These may account for the specific binding of ADM to the Sertoli cells. Administration of ADM to Sertoli cells resulted in an enhancement of basal and FSH-stimulated inhibin B production. On the other hand, the production of ADM and the mRNA levels of Calcrl and Ramp2 in the Sertoli cells were suppressed by FSH. The results suggest that ADM, via its control in the secretion of inhibin B, may play a role in regulating spermatogenesis as well as the hypothalamus-pituitary-gonad feedback system. In addition, like in the Leydig cell, ADM and EDN1 were found to regulate the production of each other in opposite directions in the Sertoli cells, suggesting the presence of yet another local regulatory mechanism in the rat testis that may be important in modulating testicular functions regulated by gonadotropins.  相似文献   

12.
Recently, it was found by two research groups that LY6A, known widely in the stem cell community as stem cell antigen-1 or SCA-1, is expressed on testicular side population (SP) cells. Whether these SP cells are spermatogonial stem cells is a point of disagreement and, therefore, the identity of the LY6A-positive cells as well. We studied the expression pattern of LY6A in testis by immunohistochemistry and found it to be expressed in the interstitial tissue on peritubular myoid, endothelial, and spherical-shaped peritubular mesenchymal cells. To address the question whether LY6A has a function in spermatogenesis or testis development, we studied the testis of Ly6a(-/-) mice (allele Ly6a(tm1Pmf)). We found no morphological abnormalities or differences in numbers of spermatogonia, spermatocytes, Leydig cells, or macrophages in relation to the number of Sertoli cells. Therefore, we conclude that LY6A expression does not influence testis development or spermatogenesis and that spermatogonial stem cells are LY6A negative.  相似文献   

13.
Gonadotropin activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases plays an important role in the regulation of testicular function. This study was undertaken to establish the expression of various subunits of cAMP-dependent protein kinases in different testicular cell types as well as during sexual maturation. RNA was extracted from cultured Sertoli cells, cultured peritubular cells, germ cells (pachytene spermatocytes, round spermatids), tumor Leydig cells, as well as whole testis from rats of various ages. Messenger RNA levels were studied by Northern analysis using available cDNA probes. The regulatory subunit (R) designated RII51 was found to be predominantly expressed in cAMP-stimulated Sertoli cells and tumor Leydig cells. Much lower levels were found in cultured peritubular cells and germ cells. A 2.9- and 3.2-kb mRNA for the RI subunit were found at about similar levels in all cell types, whereas the smaller 1.7-kb mRNA was expressed in high levels in germ cells. Also, the catalytic subunit (C) of cAMP-dependent protein kinase, designated C alpha, was expressed in all cell types; the highest mRNA levels for this subunit were found in germ cells and in tumor Leydig cells. The 1.7-kb mRNA for androgen-binding protein (ABP) was abundant in cAMP-stimulated Sertoli cells and was not present in other cell types of the testis. Furthermore, the cellular localization of the cAMP-dependent protein kinase subunits was also supported by developmental studies. The mRNA level of the RII51 3.2-kb species was relatively constant until Day 30, after which there was a tendency to decrease. A 1.6-kb message first appeared at greater ages. The mRNA for the smaller 1.7-kb species of RI, as well as the C alpha, showed a significant increase during development, supporting an enrichment of these mRNAs in germ cells. Messenger RNA levels for ABP were not detected in testis from 5- to 10-day-old rats but increased up to Day 30. After this age, mRNA for ABP revealed an age-dependent decrease, which parallels the relative increase of germ cells in the testis. In summary, these results demonstrate a clear pattern of cellular localization of the various mRNA species for subunits of the cAMP-dependent protein kinase in the rat testis.  相似文献   

14.
Although the involvement of viruses in alterations of testicular function and in sexually transmitted diseases is well known, paradoxically, the testicular antiviral defense system has virtually not been studied. The well known antiviral activity of interferons (IFNs) occurs via the action of several IFN-induced proteins, among which the 2′5′ oligoadenylate synthetase (2′5′ A synthetase), the double-stranded RNA-activated protein kinase (PKR), and the Mx proteins are the best known. To explore the antiviral capacity of the testis and to study the testicular action of IFNs, we looked for the presence and regulation of these three proteins in isolated seminiferous tubule cells, cultured in the presence or in the absence of IFN α, IFN γ, or Sendai virus. In all conditions tested, the meiotic pachytene spermatocytes and the post-meiotic early spermatids lacked 2′5′ A synthetase, PKR, and Mx mRNAs and proteins. In contrast, Sertoli cells constitutively expressed these mRNAs and proteins, and their levels were greatly increased after IFN α or Sendai virus exposure. While peritubular cells were also able to markedly express 2′5′ A synthetase, PKR, and Mx mRNA and proteins after IFN α or viral exposure, only PKR was constitutively present in these cells. Interestingly, IFN γ had no effect on peritubular cells' 2′5′ A synthetase and Mx production but it enhanced Mx proteins in Sertoli cells. In conclusion, this study reveals that the seminiferous tubules are particularly well equipped to react to a virus attack. The fact that the two key tubular elements of the blood–testis barrier, namely, Sertoli and peritubular cells, were found to assume this protection allows the extension of the concept of blood–testis barrier to the testicular antiviral defense.  相似文献   

15.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

16.
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.  相似文献   

17.
In the present study we have examined the cellular localization and developmental changes of mRNAs for retinoid-binding proteins in rat testis. We demonstrate that mRNA (0.7 kb) for cellular retinol-binding protein (CRBP) is expressed only in Sertoli cells and peritubular cells. The mRNA for CRBP could not be detected in other testicular cells. In contrast, mRNA for cellular retinoic acid-binding protein (CRABP) was detected primarily in germ cells and to a small extent in tumor Leydig cells. The mRNA for CRABP in germ cells revealed distinct size heterogeneity and three distinct mRNA species were observed (1.0, 1.8, and 1.9 kb), in contrast to previous data for somatic cells where only the 1.0-kb mRNA has been reported. Messenger RNAs for retinoic acid receptor-alpha (RAR alpha) were detected in both somatic and haploid germ cells. The highest level of RAR alpha was seen in Sertoli cells, round spermatids, and tumor Leydig cells. Lower, but distinct, levels were observed in peritubular cells. Furthermore, we observed germ cell-specific species of RAR alpha mRNA (4 kb and approximately 7 kb). The smallest mRNA for RAR alpha (2.7 kb) in somatic cells was absent in germ cells. The levels of mRNAs for the various retinoid-binding proteins in whole testis obtained from rats of various ages confirmed this cellular localization. The mRNAs for CRBP, the small molecular size (2.7 kb) mRNA for RAR alpha (localized to somatic cells), and the 1-kb mRNA for CRABP showed an age-dependent decrease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

19.
Macrophage migration inhibitory factor (MIF), originally described as a T-cell product, has recently been identified in several endocrine organs. In the rat testis, MIF is secreted by the Leydig cells into testicular interstitial fluid that directly contacts Sertoli and peritubular cells. To investigate whether MIF is involved in calcium-dependent signal transduction, we have isolated rat Sertoli and peritubular cells. Despite progress in understanding functional properties of MIF, the molecular mechanism of MIF action in target cells is almost completely unknown. Here we find that recombinant MIF evokes a transient increase in calcium levels in peritubular cells but not in Sertoli cells from dissociated rat testis. Concentrations in the range between 12.5 ng/ml and 120 ng/ml of recombinant MIF were found to be effective, with 50 ng/ml yielding the largest increase in intracellular calcium. Preincubation of MIF with a neutralizing monoclonal antibody specifically blocked the response. Incubation of the peritubular cells in calcium-free buffer clearly decreased the evoked response in intracellular calcium concentration. However, the calcium response was greatly decreased by thapsigargin, an inhibitor of the Ca(2+) ATPase of the endoplasmic reticulum. The results strongly indicate that calcium is mobilized from reticulum stores during MIF-mediated signal transduction in the testis. In conclusion, our results provide the first characterization of MIF signal transduction in the testis and suggest that signaling from Leydig cells to peritubular cells through MIF is mediated by receptors coupled to release of intracellular calcium.  相似文献   

20.
Immature rat Sertoli cells aggregate and form tubule-like structures when cultured on a monolayer of peritubular myoid cells. In this study, differential gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells were examined. One of the cDNA clones isolated showed high homology to calcyclin and a microvascular differentiation gene, CEC5, which was reported to be highly homologous to CASK, a membrane-associated guanylate kinase homolog. Sequencing and mRNA analysis of rat calcyclin demonstrated that the gene was differentially expressed and was found only in peritubular cells and cocultures with increased levels. In contrast, CASK was expressed by Sertoli cells, peritubular cells, and cocultures, whereas CEC5 was never found in the testicular somatic cells. Our findings point to a paracrine regulation of calcyclin expression in testicular peritubular fibroblasts which seems to be related to tubular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号