首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.  相似文献   

2.
FtsZ, the prokaryotic ortholog of tubulin, assembles into polymers in the bacterial division ring. The interfaces between monomers contain a GTP molecule, but the relationship between polymerization and GTPase activity is not unequivocally proven. A set of short FtsZ polymers were modelled and the formation of active GTPase structures was monitored using molecular dynamics. Only the interfaces nearest the polymer ends exhibited an adequate geometry for GTP hydrolysis. Simulated conversion of interfaces from close-to-end to internal position and vice versa resulted in their spontaneous rearrangement between active and inactive conformations. This predicted behavior of FtsZ polymer ends was supported by in vitro experiments.  相似文献   

3.
In Escherichia coli FtsZ organizes into a cytoskeletal ring structure, the Z ring, which effects cell division. FtsZ is a GTPase, but the free energy of GTP hydrolysis does not appear to be used for generation of the constriction force, leaving open the question of the function of the GTPase activity of FtsZ. Here we study the mechanism by which SulA, an inhibitor of FtsZ induced during the SOS response, inhibits FtsZ function. We studied the effects of SulA on the in vitro activities of FtsZ, on Z rings in vivo, and on a kinetic model for FtsZ polymerization in silico. We found that the binding of SulA to FtsZ is necessary but not sufficient for inhibition of polymerization, since the assembly of FtsZ polymers in the absence of the GTPase activity was not inhibited by SulA. We developed a new model for FtsZ polymerization that accounts for the cooperativity of FtsZ and could account for cooperativity observed in other linear polymers. When SulA was included in the kinetic scheme, simulations revealed that SulA with strong affinity for FtsZ delayed, but did not prevent, the assembly of polymers when they were not hydrolyzing GTP. Furthermore, the simulations indicated that SulA controls the assembly of FtsZ by binding to a polymerization-competent form of the FtsZ molecule and preventing it from participating in assembly. In vivo stoichiometry of the disruption of Z rings by SulA suggests that FtsZ may undergo two cooperative transitions in forming the Z ring.  相似文献   

4.
Experimental conditions that simulate the crowded bacterial cytoplasmic environment have been used to study the assembly of the essential cell division protein FtsZ from Escherichia coli. In solutions containing a suitable concentration of physiological osmolytes, macromolecular crowding promotes the GTP-dependent assembly of FtsZ into dynamic two-dimensional polymers that disassemble upon GTP depletion. Atomic force microscopy reveals that these FtsZ polymers adopt the shape of ribbons that are one subunit thick. When compared with the FtsZ filaments observed in vitro in the absence of crowding, the ribbons show a lag in the GTPase activity and a decrease in the GTPase rate and in the rate of GTP exchange within the polymer. We propose that, in the crowded bacterial cytoplasm under assembly-promoting conditions, the FtsZ filaments tend to align forming dynamic ribbon polymers. In vivo these ribbons would fit into the Z-ring even in the absence of other interactions. Therefore, the presence of mechanisms to prevent the spontaneous assembly of the Z-ring in non-dividing cells must be invoked.  相似文献   

5.
The cell division protein FtsZ is a GTPase structurally related to tubulin and, like tubulin, it assembles in vitro into filaments, sheets and other structures. To study the roles that GTP binding and hydrolysis play in the dynamics of FtsZ polymerization, the nucleotide contents of FtsZ were measured under different polymerizing conditions using a nitrocellulose filter-binding assay, whereas polymerization of the protein was followed in parallel by light scattering. Unpolymerized FtsZ bound 1 mol of GTP mol(-1) protein monomer. At pH 7.5 and in the presence of Mg(2+) and K(+), there was a strong GTPase activity; most of the bound nucleotide was GTP during the first few minutes but, later, the amount of GTP decreased in parallel with depolymerization, whereas the total nucleotide contents remained invariant. These results show that the long FtsZ polymers formed in solution contain mostly GTP. Incorporation of nucleotides into the protein was very fast either when the label was introduced at the onset of the reaction or subsequently during polymerization. Molecular modelling of an FtsZ dimer showed the presence of a cleft between the two subunits maintaining the nucleotide binding site open to the medium. These results show that the FtsZ polymers are highly dynamic structures that quickly exchange the bound nucleotide, and this exchange can occur in all the subunits.  相似文献   

6.
Huecas S  Andreu JM 《FEBS letters》2004,569(1-3):43-48
Stable, more than 98% nucleotide-free apo-FtsZ was prepared from purified Methanococcus jannaschhi FtsZ. This facilitates the study of the functional mechanisms of this FtsZ, an assembling GTPase, which shares a common fold with eukaryotic tubulin. Apo-FtsZ underwent cooperative magnesium-induced polymerization with a similar critical concentration and morphology related to that of reconstituted GTP-bound FtsZ, suggesting that the binding of GTP contributes insignificantly to the stability of the FtsZ polymers. On the other hand, reconstituted GDP-FtsZ polymerized with a larger critical concentration than GTP-FtsZ, indicating that GDP binding destabilizes FtsZ polymers. Upon GTP hydrolysis by FtsZ polymers, in the absence of a continued GTP supply and under macromolecular crowding conditions enhancing FtsZ polymerization, the straight GTP polymers disappeared and were replaced by characteristic helically curved GDP-bound polymers. These results suggest that the roles of GTP binding and hydrolysis by this archaeal FtsZ are simply to facilitate disassembly. In a physiological situation in GTP excess, GDP-bound FtsZ subunits could again bind GTP, or trigger disassembly, or be recognized by FtsZ filament depolymerizing proteins, allowing the Z-ring dynamics during prokaryotic cell division.  相似文献   

7.
We have analyzed the substrate kinetics of the GTPase activity of FtsZ and the effects of two different GTPase inhibitors, GDP and the slowly hydrolyzable GTP analogue GMPCPP. In the absence of inhibitors the GTPase activity follows simple Michaelis-Menten kinetics, and both GDP and GMPCPP inhibited the activity in a competitive manner. These results indicate that the GTPase active sites in FtsZ filaments are independent of each other, a feature relevant to elucidate the role of GTP hydrolysis in FtsZ function and cell division.  相似文献   

8.
Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ.  相似文献   

9.
Prokaryotic cell division protein FtsZ, an assembling GTPase, directs the formation of the septosome between daughter cells. FtsZ is an attractive target for the development of new antibiotics. Assembly dynamics of FtsZ is regulated by the binding, hydrolysis, and exchange of GTP. We have determined the energetics of nucleotide binding to model apoFtsZ from Methanococcus jannaschii and studied the kinetics of 2'/3'-O-(N-methylanthraniloyl) (mant)-nucleotide binding and dissociation from FtsZ polymers, employing calorimetric, fluorescence, and stopped-flow methods. FtsZ binds GTP and GDP with K(b) values ranging from 20 to 300 microm(-1) under various conditions. GTP.Mg(2+) and GDP.Mg(2+) bind with slightly reduced affinity. Bound GTP and the coordinated Mg(2+) ion play a minor structural role in FtsZ monomers, but Mg(2+)-assisted GTP hydrolysis triggers polymer disassembly. Mant-GTP binds and dissociates quickly from FtsZ monomers, with approximately 10-fold lower affinity than GTP. Mant-GTP displacement measured by fluorescence anisotropy provides a method to test the binding of any competing molecules to the FtsZ nucleotide site. Mant-GTP is very slowly hydrolyzed and remains exchangeable in FtsZ polymers, but it becomes kinetically stabilized, with a 30-fold slower k(+) and approximately 500-fold slower k(-) than in monomers. The mant-GTP dissociation rate from FtsZ polymers is comparable with the GTP hydrolysis turnover and with the reported subunit turnover in Escherichia coli FtsZ polymers. Although FtsZ polymers can exchange nucleotide, unlike its eukaryotic structural homologue tubulin, GDP dissociation may be slow enough for polymer disassembly to take place first, resulting in FtsZ polymers cycling with GTP hydrolysis similarly to microtubules.  相似文献   

10.
Polymer formation by the essential FtsZ protein plays a crucial role in the cytokinesis of most prokaryotes. Lateral associations between these FtsZ polymers to form bundles or sheets are widely predicted to be extremely important for FtsZ function in vivo. We have carried out a study in vitro of FtsZ polymer formation and bundling using linear dichroism (LD) to assess structural properties of the polymers. We demonstrate proof-of-principle experiments to show that LD can be used as a technique to follow FtsZ polymerization, and we present the LD spectra of FtsZ polymers. Our subsequent examination of FtsZ polymer bundling induced by calcium reveals a substantial increase in the LD signal indicative of increased polymer length and rigidity. We also detect a specific conformational change in the guanine moiety associated with bundling, whereas the conformation and configuration of the FtsZ monomers within the polymer remain largely unchanged. We demonstrate that other divalent cations can induce this conformational change in FtsZ-bound GTP coincident with polymer bundling. Therefore, we present "flipping" of the guanine moiety in FtsZ-bound GTP as a mechanism that explains the link between reduced GTPase activity, increased polymer stability, and polymer bundling.  相似文献   

11.
Dynamic assembly of FtsZ regulated by GTP hydrolysis.   总被引:30,自引:5,他引:25       下载免费PDF全文
FtsZ forms a cytokinetic ring, designated the Z ring, that directs cytokinesis in prokaryotes. It has limited sequence similarity to eukaryotic tubulins and, like tubulin, it has GTPase activity and the ability to assemble into various structures including protofilaments, bundles and minirings. By using both electron microscopy and sedimentation, we demonstrate that FtsZ from Escherichia coli undergoes a strictly GTP-dependent polymerization and the polymers disappear as the GTP is consumed. Thus, FtsZ polymerization, like that of tubulin, is dynamic and regulated by GTP hydrolysis. These results provide the basis for the dynamics of the Z ring and favor a model in which the Z ring is formed by a nucleation event.  相似文献   

12.
A 4.5-kb BamHI fragment of chromosomal DNA of Streptomyces collinus containing gene ftsZ was cloned and sequenced. Upstream of ftsZ are localized genes ftsQ, murG, and ftsW, and downstream is yfiH. Gene ftsA is not adjacent to ftsZ or other genes of the cloned fragment. Protein FtsZ was isolated and characterized with respect to its binding to GTP and GTPase activity. The binding of GTP to FtsZ was Ca(2+) or Mg(2+) dependent with an optimum at 10 mM. The rate of GTP hydrolysis by FtsZ was stimulated by KCl. The presence of Ca(2+) (3-5 mM) resulted in a significant increase of GTPase activity. Higher concentrations of Ca(2+) than 5 mM had an inhibitory effect on GTPase activity. These results indicate that divalent ions (Ca(2+) or Mg(2+)) can be involved in regulation of GTP binding and hydrolysis of FtsZ. The maximum level of FtsZ was detected in aerial mycelium when spiral loops and sporulation septa were formed. FtsZ is degraded after finishing sporulation septa.  相似文献   

13.
The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coli and purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90 degrees light scattering. The mycobacterial protein reaches maximum polymerization much more slowly ( approximately 10 min) than E. coli FtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg(2+) and GTP. The minimum concentration of FtsZ needed for polymerization is 3 microM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2, 3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate+ ++ (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.  相似文献   

14.
The polymerization of FtsZ is a finely regulated process that plays an essential role in the bacterial cell division process. However, only a few modulators of FtsZ polymerization are known. We identified monosodium glutamate as a potent inducer of FtsZ polymerization. In the presence of GTP, glutamate enhanced the rate and extent of polymerization of FtsZ in a concentration-dependent manner; approximately 90% of the protein was sedimented as polymer in the presence of 1 m glutamate. Electron micrographs of glutamate-induced polymers showed large filamentous structures with extensive bundling. Furthermore, glutamate strongly stabilized the polymers against dilution-induced disassembly, and it decreased the GTPase activity of FtsZ. Calcium induced FtsZ polymerization and bundling of FtsZ polymers; interestingly, although 1 m glutamate produced a larger light-scattering signal than produced by 10 mm calcium, the amount of polymer sedimented in the presence of 1 m glutamate and 10 mm calcium was similar. Thus, the increased light scattering in the presence of glutamate must be due to its ability to induce more extensive bundling of FtsZ polymers than calcium. The data suggest that calcium and glutamate might induce FtsZ polymerization by different mechanisms.  相似文献   

15.
The Mycobacterium tuberculosis FtsZ (FtsZ(TB)), unlike other eubacterial FtsZ proteins, shows slow GTP-dependent polymerization and weak GTP hydrolysis activities [E.L. White, L.J. Ross, R.C. Reynolds, L.E. Seitz, G.D. Moore, D.W. Borhani, Slow polymerization of Mycobacterium tuberculosis FtsZ, J. Bacteriol. 182 (2000) 4028-4034]. In an attempt to understand the biological significance of these findings, we created mutations in the GTP-binding (FtsZ(G103S)) and GTP hydrolysis (FtsZ(D210G)) domains of FtsZ and characterized the activities of the mutant proteins in vitro and in vivo. We show that FtsZ(G103S) is defective for binding to GTP and polymerization activities, and exhibited reduced GTPase activity whereas FtsZ(D210G) protein is proficient in binding to GTP, showing reduced polymerization activity but did not show any measurable GTPase activity. Visualization of FtsZ-GFP structures in ftsZ merodiploid strains by fluorescent microscopy revealed that FtsZ(D210G) is proficient in associating with Z-ring structures whereas FtsZ(G103S) is not. Finally, we show that Mycobacterium smegmatis ftsZ mutant strains producing corresponding mutant FtsZ proteins are non-viable indicating that mutant FtsZ proteins cannot function as the sole source for FtsZ, a result distinctly different from that reported for Escherichia coli. Together, our results indicate that optimal GTPase and polymerization activities of FtsZ are required to sustain cell division in mycobacteria and that the same conserved mutations in different bacterial species have distinct phenotypes.  相似文献   

16.
The cell division protein FtsZ assembles in vitro by a mechanism of cooperative association dependent on GTP, monovalent cations, and Mg2+. We have analyzed the GTPase activity and assembly dynamics of Streptococcus pneumoniae FtsZ (SpnFtsZ). SpnFtsZ assembled in an apparently cooperative process, with a higher critical concentration than values reported for other FtsZ proteins. It sedimented in the presence of GTP as a high molecular mass polymer with a well defined size and tended to form double-stranded filaments in electron microscope preparations. GTPase activity depended on K+ and Mg2+ and was inhibited by Na+. GTP hydrolysis exhibited a delay that included a lag phase followed by a GTP hydrolysis activation step, until reaction reached the GTPase rate. The lag phase was not found in polymer assembly, suggesting a transition from an initial non-GTP-hydrolyzing polymer that switches to a GTP-hydrolyzing polymer, supporting models that explain FtsZ polymer cooperativity.  相似文献   

17.
Analysis of the interaction of FtsZ with itself, GTP, and FtsA.   总被引:30,自引:9,他引:21       下载免费PDF全文
The interaction of FtsZ with itself, GTP, and FtsA was examined by analyzing the sensitivity of FtsZ to proteolysis and by using the yeast two-hybrid system. The N-terminal conserved domain consisting of 320 amino acids bound GTP, and a central region of FtsZ, encompassing slightly more than half of the protein, was cross-linked to GTP. Site-directed mutagenesis revealed that none of six highly conserved aspartic acid and asparagine residues were required for GTP binding. These results indicate that the specificity determinants for GTP binding are different than those for the GTPase superfamily. The N-terminal conserved domain of FtsZ contained a site for self-interaction that is conserved between FtsZ proteins from distantly related bacterial species. FtsZ320, which was truncated at the end of the conserved domain, was a potent inhibitor of division although it expressed normal GTPase activity and could polymerize. FtsZ was also found to interact directly with FtsA, and this interaction could also be observed between these proteins from distantly related bacterial species.  相似文献   

18.
The influence of potassium content (at neutral pH and millimolar Mg2+) on the size distribution of FtsZ polymers formed in the presence of constantly replenished GTP under steady-state conditions was studied by a combination of biophysical methods. The size of the GTP-FtsZ polymers decreased with lower potassium concentration, in contrast with the increase in the mass of the GDP-FtsZ oligomers, whereas no effect was observed on FtsZ GTPase activity and critical concentration of polymerization. Remarkably, the concerted formation of a narrow size distribution of GTP-FtsZ polymers previously observed at high salt concentration was maintained in all KCl concentrations tested. Polymers induced with guanosine 5′-(α,β-methylene)triphosphate, a slowly hydrolyzable analog of GTP, became larger and polydisperse as the potassium concentration was decreased. Our results suggest that the potassium dependence of the GTP-FtsZ polymer size may be related to changes in the subunit turnover rate that are independent of the GTP hydrolysis rate. The formation of a narrow size distribution of FtsZ polymers under very different solution conditions indicates that it is an inherent feature of FtsZ, not observed in other filament-forming proteins, with potential implications in the structural organization of the functional Z-ring.  相似文献   

19.
Guanine nucleotide-dependent assembly of FtsZ into filaments.   总被引:41,自引:19,他引:22       下载免费PDF全文
FtsZ is an essential cell division protein that is localized to the leading edge of the bacterial septum in a cytokinetic ring. It contains the tubulin signature motif and is a GTP binding protein with a GTPase activity. Further comparison of FtsZ with eukaryotic tubulins revealed some additional sequence similarities, perhaps indicating a similar GTP binding site. Examination of FtsZ incubated in vitro by electron microscopy revealed a guanine nucleotide-dependent assembly into protein filaments, supporting the hypothesis that the FtsZ ring is formed through self-assembly. FtsZ3, which is unable to bind GTP, does not polymerize, whereas FtsZ2, which binds GTP but is deficient in GTP hydrolysis, is capable of polymerization.  相似文献   

20.
As a model system for designing new inhibitors of bacterial cell division, we studied the essential and highly conserved FtsZ GTPase from Pseudomonas aeruginosa. A collection of GTP analogues were prepared using the solid-phase parallel synthesis approach. The synthesized GTP analogues inhibited the GTPase activity of FtsZ with IC(50) values between 450microM and 2.6mM, and 5 compounds inhibited Staphylococcus aureus growth in a biological assay. The FtsZ spectrophotometric assay developed for screening of synthesized compounds is the first step in identification of antibacterials targeting the bacterial cell division essential proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号